IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v178y2022ics0040162522000981.html
   My bibliography  Save this article

The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents

Author

Listed:
  • Fernández, Ana María
  • Ferrándiz, Esther
  • Medina, Jennifer

Abstract

Technology innovation is widely recognised as a critical means in tackling climate change and fulfilling energy policy objectives. The objective of this paper is twofold: first, to provide a descriptive analysis of innovation in energy technology across countries and sectors and over time; and second, to explore the determining factors of patented knowledge diffusion of energy technologies by distinguishing between renewables and other energy patents, i.e., fossil and nuclear patents) thorough a regression analysis. The data employed in this paper consists of an original database on renewables and other energy patents applied by firms in the period 1990–2015 and contained in PATSTAT. By drawing on patent citations as an indicator of knowledge diffusion and focusing on characteristics extracted from patent documents, a set of econometric models is estimated. Our results show that those patents containing more citations to previous scientific literature and patents attain greater diffusion. Joint patents with other firms or universities exert a negligible effect on technology regarding renewables. Co-ownership with universities has a negative effect on the diffusion of other types of energy technology. Several policy implications can be determined from our results: for example, the justification for policies oriented towards enhancing the incorporation of scientific knowledge and co-inventorship in energy innovation.

Suggested Citation

  • Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s0040162522000981
    DOI: 10.1016/j.techfore.2022.121566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522000981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Bornmann, Lutz & Leydesdorff, Loet, 2015. "Does quality and content matter for citedness? A comparison with para-textual factors and over time," Journal of Informetrics, Elsevier, vol. 9(3), pages 419-429.
    3. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    4. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    5. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    6. Ghisetti, Claudia & Marzucchi, Alberto & Montresor, Sandro, 2015. "The open eco-innovation mode. An empirical investigation of eleven European countries," Research Policy, Elsevier, vol. 44(5), pages 1080-1093.
    7. Torben Klarl, 2014. "Knowledge diffusion and knowledge transfer revisited: two sides of the medal," Journal of Evolutionary Economics, Springer, vol. 24(4), pages 737-760, September.
    8. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    9. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    10. Schmidt, Tobias S. & Schneider, Malte & Hoffmann, Volker H., 2012. "Decarbonising the power sector via technological change – differing contributions from heterogeneous firms," Energy Policy, Elsevier, vol. 43(C), pages 466-479.
    11. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    12. Manuel Acosta & Daniel Coronado & Rosario Marín & Pedro Prats, 2013. "Factors affecting the diffusion of patented military technology in the field of weapons and ammunition," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 1-22, January.
    13. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    14. Daron Acemoglu & Ufuk Akcigit, 2012. "Intellectual Property Rights Policy, Competition And Innovation," Journal of the European Economic Association, European Economic Association, vol. 10(1), pages 1-42, February.
    15. Hu, Albert G. Z. & Jaffe, Adam B., 2003. "Patent citations and international knowledge flow: the cases of Korea and Taiwan," International Journal of Industrial Organization, Elsevier, vol. 21(6), pages 849-880, June.
    16. Joaquín M. Azagra-Caro & Elena M. Tur, 2018. "Examiner trust in applicants to the European Patent Office: country specificities," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1319-1348, December.
    17. Kristie Briggs & Mary Wade, 2014. "More is better: evidence that joint patenting leads to quality innovation," Applied Economics, Taylor & Francis Journals, vol. 46(35), pages 4370-4379, December.
    18. repec:adr:anecst:y:2005:i:79-80:p:05 is not listed on IDEAS
    19. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    20. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    21. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    22. Iain M. Cockburn & Samuel Kortum & Scott Stern, 2002. "Are All Patent Examiners Equal? The Impact of Examiner Characteristics," NBER Working Papers 8980, National Bureau of Economic Research, Inc.
    23. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    24. Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
    25. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    26. C. Gay & C. Le Bas, 2005. "Uses without too many abuses of patent citations or the simple economics of patent citations as a measure of value and flows of knowledge," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 333-338.
    27. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    28. Thelwall, Mike & Wilson, Paul, 2014. "Distributions for cited articles from individual subjects and years," Journal of Informetrics, Elsevier, vol. 8(4), pages 824-839.
    29. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    30. Balconi, Margherita & Brusoni, Stefano & Orsenigo, Luigi, 2010. "In defence of the linear model: An essay," Research Policy, Elsevier, vol. 39(1), pages 1-13, February.
    31. Kathryn Rudie Harrigan & Maria Chiara Guardo & Elona Marku, 2018. "Patent value and the Tobin’s q ratio in media services," The Journal of Technology Transfer, Springer, vol. 43(1), pages 1-19, February.
    32. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    33. Singh, Jasjit, 2008. "Distributed R&D, cross-regional knowledge integration and quality of innovative output," Research Policy, Elsevier, vol. 37(1), pages 77-96, February.
    34. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    35. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    36. Adam Jaffe & Manuel Trajtenberg, 1999. "International Knowledge Flows: Evidence From Patent Citations," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 8(1-2), pages 105-136.
    37. Gerald Silverberg & Giovanni Dosi & Luigi Orsenigo, 2000. "Innovation, Diversity and Diffusion: A Self-Organisation Model," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 14, pages 410-432, Edward Elgar Publishing.
    38. Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2020. "The science base of renewables," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    39. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    40. Manuel Acosta & Daniel Coronado & Ana Fernández, 2009. "Exploring the quality of environmental technology in Europe: evidence from patent citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 131-152, July.
    41. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    42. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    43. Andergassen, Rainer & Nardini, Franco & Ricottilli, Massimo, 2017. "Innovation diffusion, general purpose technologies and economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 40(C), pages 72-80.
    44. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    45. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    46. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    47. Lee Branstetter, 2010. "Exploring the Link between Academic Science and Industrial Innovation," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 119-142, National Bureau of Economic Research, Inc.
    48. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    49. Gene M. Grossman & Elhanan Helpman, 2018. "Growth, Trade, and Inequality," Econometrica, Econometric Society, vol. 86(1), pages 37-83, January.
    50. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    51. Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2008. "The Value of European Patents," CEPR Discussion Papers 6848, C.E.P.R. Discussion Papers.
    52. Yong-Gil Lee & Jeong-Dong Lee & Yong-Il Song & Se-Jun Lee, 2007. "An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 27-39, January.
    53. Yuxian Liu & Ronald Rousseau, 2010. "Knowledge diffusion through publications and citations: A case study using ESI-fields as unit of diffusion," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 340-351, February.
    54. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    55. Bart Verspagen, 2000. "The Role of Large Multinationals in the Dutch Technology Infrastructure. A Patent Citation Analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 427-448, February.
    56. Hanne Peeters & Julie Callaert & Bart Looy, 2020. "Do firms profit from involving academics when developing technology?," The Journal of Technology Transfer, Springer, vol. 45(2), pages 494-521, April.
    57. Duch-Brown, Néstor & Costa-Campi, María Teresa, 2015. "The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis," Energy Policy, Elsevier, vol. 83(C), pages 267-276.
    58. Bessen, James, 2008. "The value of U.S. patents by owner and patent characteristics," Research Policy, Elsevier, vol. 37(5), pages 932-945, June.
    59. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    60. Per Botolf Maurseth, 2005. "Lovely but dangerous: The impact of patent citations on patent renewal," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 351-374.
    61. Belderbos, René & Cassiman, Bruno & Faems, Dries & Leten, Bart & Van Looy, Bart, 2014. "Co-ownership of intellectual property: Exploring the value-appropriation and value-creation implications of co-patenting with different partners," Research Policy, Elsevier, vol. 43(5), pages 841-852.
    62. Noailly, Joëlle & Ryfisch, David, 2015. "Multinational firms and the internationalization of green R&D: A review of the evidence and policy implications," Energy Policy, Elsevier, vol. 83(C), pages 218-228.
    63. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    64. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    65. Guellec, Dominique & Pottelsberghe de la Potterie, Bruno v., 2001. "The internationalisation of technology analysed with patent data," Research Policy, Elsevier, vol. 30(8), pages 1253-1266, October.
    66. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
    67. Gaétan de Rassenfosse & Hélène Dernis & Geert Boedt, 2014. "An Introduction to the Patstat Database with Example Queries," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(3), pages 395-408, September.
    68. Patel, Darshak & Ward, Michael R., 2011. "Using patent citation patterns to infer innovation market competition," Research Policy, Elsevier, vol. 40(6), pages 886-894, July.
    69. Brooks, Harvey, 1994. "The relationship between science and technology," Research Policy, Elsevier, vol. 23(5), pages 477-486, September.
    70. Hall, Bronwyn H. & MacGarvie, Megan, 2010. "The private value of software patents," Research Policy, Elsevier, vol. 39(7), pages 994-1009, September.
    71. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    72. William J Baumol, 1991. "Technological Imperatives, Productivity and Insurance Costs*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 16(2), pages 154-165, April.
    73. Momeni, Abdolreza & Rost, Katja, 2016. "Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 16-29.
    74. Briggs, Kristie, 2015. "Co-owner relationships conducive to high quality joint patents," Research Policy, Elsevier, vol. 44(8), pages 1566-1573.
    75. Corrocher, Nicoletta & Mancusi, Maria Luisa, 2021. "International collaborations in green energy technologies: What is the role of distance in environmental policy stringency?," Energy Policy, Elsevier, vol. 156(C).
    76. Peter Thompson, 2006. "Patent Citations and the Geography of Knowledge Spillovers: Evidence from Inventor- and Examiner-added Citations," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 383-388, May.
    77. Paola Garrone & Lucia Piscitello & Yan Wang, 2014. "Innovation Performance and International Knowledge Spillovers: Evidence from the Renewable Energy Sector in OECD Countries," Industry and Innovation, Taylor & Francis Journals, vol. 21(7-8), pages 574-598, November.
    78. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    79. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    80. Yutao Sun & Chen Zhang & Robert A. W. Kok, 2020. "The role of research outcome quality in the relationship between university research collaboration and technology transfer: empirical results from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1003-1026, February.
    81. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    82. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    83. Ivan Haščič & Jérôme Silva & Nick Johnstone, 2015. "The Use of Patent Statistics for International Comparisons and Analysis of Narrow Technological Fields," OECD Science, Technology and Industry Working Papers 2015/5, OECD Publishing.
    84. Emmanuel Duguet & Megan MacGarvie, 2005. "How well do patent citations measure flows of technology? Evidence from French innovation surveys," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 375-393.
    85. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    86. Dietmar Harhoff & Stefan Wagner, 2009. "The Duration of Patent Examination at the European Patent Office," Management Science, INFORMS, vol. 55(12), pages 1969-1984, December.
    87. Hall, Bronwyn H. & Helmers, Christian, 2013. "Innovation and diffusion of clean/green technology: Can patent commons help?," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 33-51.
    88. Acosta, Manuel & Coronado, Daniel & Martínez, M. Ángeles, 2012. "Spatial differences in the quality of university patenting: Do regions matter?," Research Policy, Elsevier, vol. 41(4), pages 692-703.
    89. Hirschey, Mark & Richardson, Vernon J., 2004. "Are scientific indicators of patent quality useful to investors?," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 91-107, January.
    90. Jaeyong Song & Paul Almeida & Geraldine Wu, 2003. "Learning--by--Hiring: When Is Mobility More Likely to Facilitate Interfirm Knowledge Transfer?," Management Science, INFORMS, vol. 49(4), pages 351-365, April.
    91. Paola Criscuolo, 2006. "The 'home advantage' effect and patent families. A comparison of OECD triadic patents, the USPTO and the EPO," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(1), pages 23-41, January.
    92. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    93. C. Gay & C. Le Bas & P. Patel & K. Touach, 2005. "The determinants of patent citations: an empirical analysis of French and British patents in the US," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 339-350.
    94. Baruffaldi, Stefano H. & Simeth, Markus, 2020. "Patents and knowledge diffusion: The effect of early disclosure," Research Policy, Elsevier, vol. 49(4).
    95. John Hagedoorn, 2003. "Sharing intellectual property rights--an exploratory study of joint patenting amongst companies," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 12(5), pages 1035-1050, October.
    96. Liu, Kun & Arthurs, Jonathan & Cullen, John & Alexander, Roger, 2008. "Internal sequential innovations: How does interrelatedness affect patent renewal?," Research Policy, Elsevier, vol. 37(5), pages 946-953, June.
    97. Yuxian Liu & Ronald Rousseau, 2010. "Knowledge diffusion through publications and citations: A case study using ESI‐fields as unit of diffusion," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(2), pages 340-351, February.
    98. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    99. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    100. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    101. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
    102. Fischer, Timo & Leidinger, Jan, 2014. "Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions," Research Policy, Elsevier, vol. 43(3), pages 519-529.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jie & Huang, Shoujun & Kamran, Hafiz Waqas, 2023. "Empowering sustainability practices through energy transition for sustainable development goal 7: The role of energy patents and natural resources among European Union economies through advanced panel," Energy Policy, Elsevier, vol. 176(C).
    2. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    3. Shuping Cheng & Lingjie Meng & Weizhong Wang, 2022. "The Impact of Environmental Regulation on Green Energy Technology Innovation—Evidence from China," Sustainability, MDPI, vol. 14(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    2. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    3. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    4. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    5. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    6. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    7. Satoshi Yasukawa & Shingo Kano, 2014. "Validating the usefulness of examiners’ forward citations from the viewpoint of applicants’ self-selection during the patent application procedure," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 895-909, June.
    8. Ebersberger, Bernd & Feit, Margarita & Mengis, Helen, 2023. "International knowledge interactions and catch-up. Evidence from European patent data for Chinese latecomer firms," International Business Review, Elsevier, vol. 32(2).
    9. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
    10. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    11. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    12. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    13. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    14. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    15. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    16. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    17. Petra Moser & Joerg Ohmstedt & Paul M. Rhode, 2016. "Patent Citations - An Analysis of Quality Differences and Citing Practices in Hybrid Corn," Working Papers 16-05, New York University, Leonard N. Stern School of Business, Department of Economics.
    18. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    19. Petra Moser & Joerg Ohmstedt & Paul W. Rhode, 2018. "Patent Citations—An Analysis of Quality Differences and Citing Practices in Hybrid Corn," Management Science, INFORMS, vol. 64(4), pages 1926-1940, April.
    20. Dornbusch, Friedrich & Neuhäusler, Peter, 2015. "Composition of inventor teams and technological progress – The role of collaboration between academia and industry," Research Policy, Elsevier, vol. 44(7), pages 1360-1375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s0040162522000981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.