IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v85y2020ics0140988319303603.html
   My bibliography  Save this article

How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity

Author

Listed:
  • Hötte, Kerstin

Abstract

The time window for effective climate change mitigation is closing. Technological change needs to be accelerated to limit global warming to a manageable level. Path dependence of technological change is one explanation for sluggish diffusion of green technologies. Firms acquire capital that differs by technology type and build up type-specific technological know-how needed to use capital efficiently. Path dependence emerges from cumulative knowledge stocks manifested in the productivity of supplied capital and firms’ capabilities. Increasing returns arise from induced innovation feedbacks and learning by doing. Relatively lower endowments with technological knowledge are a barrier to diffusion for new technologies. This paper shows how the evolution of relative stocks of technological knowledge explains different shapes of diffusion curves. Using an eco-technology extension of the macroeconomic agent-based model Eurace@unibi, it is shown how the effectiveness of different climate policies depends on the type and strength of diffusion barriers. Environmental taxes can outweigh lower productivity and subsidies perform better if lacking capabilities hinder firms to adopt a sufficiently mature technology.

Suggested Citation

  • Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:eneeco:v:85:y:2020:i:c:s0140988319303603
    DOI: 10.1016/j.eneco.2019.104565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319303603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.104565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Vasco Carvalho & Nico Voigtländer, 2014. "Input diffusion and the evolution of production networks," Economics Working Papers 1418, Department of Economics and Business, Universitat Pompeu Fabra, revised Feb 2015.
    4. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    5. Sarah Wolf & Steffen Fürst & Antoine Mandel & Wiebke Lass & Daniel Lincke & Federico Pablo-Marti & Carlo Jaeger, 2013. "A multi-agent model of several economic regions," PSE - Labex "OSE-Ouvrir la Science Economique" halshs-00825217, HAL.
    6. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    7. H. Dawid & P. Harting & M. Neugart, 2018. "Fiscal transfers and regional economic growth," Review of International Economics, Wiley Blackwell, vol. 26(3), pages 651-671, August.
    8. Triguero, Angela & Moreno-Mondéjar, Lourdes & Davia, María A., 2013. "Drivers of different types of eco-innovation in European SMEs," Ecological Economics, Elsevier, vol. 92(C), pages 25-33.
    9. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    11. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    12. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    13. Herbert Dawid & Philipp Harting & Sander Hoog & Michael Neugart, 2019. "Macroeconomics with heterogeneous agent models: fostering transparency, reproducibility and replication," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 467-538, March.
    14. Peter Klimek & Ricardo Hausmann & Stefan Thurner, 2012. "Empirical Confirmation of Creative Destruction from World Trade Data," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    15. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    16. David, Paul A, 1985. "Clio and the Economics of QWERTY," American Economic Review, American Economic Association, vol. 75(2), pages 332-337, May.
    17. Allan, Corey & Jaffe, Adam B. & Sin, Isabelle, 2014. "Diffusion of Green Technology: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 7(1), pages 1-33, April.
    18. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    19. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    20. Dawid, H. & Harting, P. & Neugart, M., 2018. "Cohesion policy and inequality dynamics: Insights from a heterogeneous agents macroeconomic model," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 220-255.
    21. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    22. Giada Di Stefano & Alfonso Gambardella & Gianmario Verona, 2012. "Technology Push and Demand Pull Perspectives in Innovation Studies: Current Findings and Future Research Directions," Post-Print hal-00696607, HAL.
    23. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    24. Peter Thompson, 2012. "The Relationship between Unit Cost and Cumulative Quantity and the Evidence for Organizational Learning-by-Doing," Journal of Economic Perspectives, American Economic Association, vol. 26(3), pages 203-224, Summer.
    25. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    26. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    27. repec:hal:spmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    28. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    29. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    30. Cowan, Robin & David, Paul A & Foray, Dominique, 2000. "The Explicit Economics of Knowledge Codification and Tacitness," Industrial and Corporate Change, Oxford University Press, vol. 9(2), pages 211-253, June.
    31. Dawid, Herbert, 2006. "Agent-based Models of Innovation and Technological Change," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 25, pages 1235-1272, Elsevier.
    32. Cowan, Robin, 1990. "Nuclear Power Reactors: A Study in Technological Lock-in," The Journal of Economic History, Cambridge University Press, vol. 50(3), pages 541-567, September.
    33. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    34. Arundel, Anthony & Kemp, Rene, 2009. "Measuring Eco-Innovation," MERIT Working Papers 2009-017, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    35. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    36. Jonathan Kohler, Michael Grubb, David Popp and Ottmar Edenhofer, 2006. "The Transition to Endogenous Technical Change in Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 17-56.
    37. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    38. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    39. Diego Comin & Bart Hobijn & Emilie Rovito, 2006. "Five Facts You Need to Know About Technology Diffusion," NBER Working Papers 11928, National Bureau of Economic Research, Inc.
    40. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    41. Dawid, H. & Harting, P. & Neugart, M., 2014. "Economic convergence: Policy implications from a heterogeneous agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 54-80.
    42. Monasterolo, Irene & Raberto, Marco, 2019. "The impact of phasing out fossil fuel subsidies on the low-carbon transition," Energy Policy, Elsevier, vol. 124(C), pages 355-370.
    43. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then He wasn't a She : Climate change and green transitions in an agent-based model integrated assessment model," Documents de Travail de l'OFCE 2018-28, Observatoire Francais des Conjonctures Economiques (OFCE).
    44. Bernhard Rengs & Manuel Scholz-Wäckerle & Ardjan Gazheli & Miklós Antal & Jeroen C.J.M. van den Bergh, 2015. "Testing Innovation, Employment and Distributional Impacts of Climate Policy Packages in a Macro-evolutionary Systems Setting. WWWforEurope Working Paper No. 83," WIFO Studies, WIFO, number 57891, February.
    45. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    46. repec:hal:spmain:info:hdl:2441/5vt1fet9fq9o5pkgj2qh2vn1cm is not listed on IDEAS
    47. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    48. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    49. Di Stefano, Giada & Gambardella, Alfonso & Verona, Gianmario, 2012. "Technology push and demand pull perspectives in innovation studies: Current findings and future research directions," Research Policy, Elsevier, vol. 41(8), pages 1283-1295.
    50. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    51. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    52. Windrum, Paul, 1999. "Simulation models of technological innovation: A Review," Research Memorandum 005, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    53. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turco, Enrico & Bazzana, Davide & Rizzati, Massimiliano & Ciola, Emanuele & Vergalli, Sergio, 2023. "Energy price shocks and stabilization policies in the MATRIX model," Energy Policy, Elsevier, vol. 177(C).
    2. Cuevas-Vargas, Héctor & Aguirre, Joao & Parga-Montoya, Neftalí, 2022. "Impact of ICT adoption on absorptive capacity and open innovation for greater firm performance. The mediating role of ACAP," Journal of Business Research, Elsevier, vol. 140(C), pages 11-24.
    3. Aistleitner, Matthias & Gräbner, Claudius & Hornykewycz, Anna, 2021. "Theory and empirics of capability accumulation: Implications for macroeconomic modeling," Research Policy, Elsevier, vol. 50(6).
    4. Skare, Marinko & Soriano, Domingo Riberio, 2021. "Technological and knowledge diffusion link: An international perspective 1870–2019," Technology in Society, Elsevier, vol. 66(C).
    5. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
    6. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    7. Enrico Turco & Davide Bazzana & Massimiliano Rizzati & Emanuele Ciola & Sergio Vergalli, 2022. "Energy price shocks and stabilization policies in a multi-agent macroeconomic model for the Euro Area," Working Papers 2022.25, Fondazione Eni Enrico Mattei.
    8. Lu Zhang & Renyan Mu & Shuhua Hu & Quan Zhang & Song Wang, 2021. "Impacts of Manufacturing Specialized and Diversified Agglomeration on the Eco-Innovation Efficiency—A Nonlinear Test from Dynamic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-27, March.
    9. Chishti, Muhammad Zubair & Sinha, Avik & Zaman, Umer & Shahzad, Umer, 2023. "Exploring the dynamic connectedness among energy transition and its drivers: Understanding the moderating role of global geopolitical risk," Energy Economics, Elsevier, vol. 119(C).
    10. Patrick Mellacher, 2022. "Endogenous viral mutations, evolutionary selection, and containment policy design," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(3), pages 801-825, July.
    11. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    12. Busra Agan & Mehmet Balcilar, 2022. "On the Determinants of Green Technology Diffusion: An Empirical Analysis of Economic, Social, Political, and Environmental Factors," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    13. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    2. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    3. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    4. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    5. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    6. Kerstin Hotte, 2021. "Demand-pull, technology-push, and the direction of technological change," Papers 2104.04813, arXiv.org, revised Jan 2023.
    7. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    8. repec:hal:spmain:info:hdl:2441/5vt1fet9fq9o5pkgj2qh2vn1cm is not listed on IDEAS
    9. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    10. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    11. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    12. Tommaso Ciarli & Karolina Safarzynska, 2020. "Sustainability and Industrial Challenge: The Hindering Role of Complexity," SPRU Working Paper Series 2020-18, SPRU - Science Policy Research Unit, University of Sussex Business School.
    13. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    14. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    15. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    16. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    17. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    18. Dosi, Giovanni & Roventini, Andrea & Russo, Emanuele, 2019. "Endogenous growth and global divergence in a multi-country agent-based model," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 101-129.
    19. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    20. repec:hal:spmain:info:hdl:2441/46k9rkvut99i7qnn4vqm25t53b is not listed on IDEAS
    21. Jukka Luhas & Mirja Mikkilä & Ville Uusitalo & Lassi Linnanen, 2019. "Product Diversification in Sustainability Transition: The Forest-Based Bioeconomy in Finland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    22. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    23. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    24. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.

    More about this item

    Keywords

    Directed technological change; Technology diffusion; Climate policy; Absorptive capacity; Agent-based model;
    All these keywords.

    JEL classification:

    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:85:y:2020:i:c:s0140988319303603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.