IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v158y2020ics0040162520309471.html
   My bibliography  Save this article

The science base of renewables

Author

Listed:
  • Persoon, P.G.J.
  • Bekkers, R.N.A.
  • Alkemade, F.

Abstract

Initiatives to foster the development of Renewable Energy Technologies (RETs) can benefit from a deep understanding of the science base that underlies such technologies, and especially how that science base differs from that of Fossil Fuel based Energy Technologies (FFETs). This paper investigates both science bases using citations in patents to scientific journals. We find that RETs generally have a more substantial science base and draw on a more diverse set of scientific disciplines. On average, the science on which RETs build is more recent, less applied and is published in journals with a higher WOS Journal Impact Factor. However, for different RETs (e.g., photovoltaics, wind turbines and non-fossil fuels), we observe much more variation across these dimensions than for different FFETs (e.g., combustion and gas turbines). Furthermore, the broad spectrum of sciences on which RETs build largely includes the smaller spectrum on which FFETs build. Based on these findings, we offer several policy recommendations to better stimulate the development of RETs.

Suggested Citation

  • Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2020. "The science base of renewables," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:tefoso:v:158:y:2020:i:c:s0040162520309471
    DOI: 10.1016/j.techfore.2020.120121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162520309471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    2. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    3. Markard, Jochen & Truffer, Bernhard, 2006. "Innovation processes in large technical systems: Market liberalization as a driver for radical change?," Research Policy, Elsevier, vol. 35(5), pages 609-625, June.
    4. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    5. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    6. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    7. Mariana Mazzucato, 2016. "From market fixing to market-creating: a new framework for innovation policy," Industry and Innovation, Taylor & Francis Journals, vol. 23(2), pages 140-156, February.
    8. Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
    9. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    10. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    11. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    12. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    13. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    14. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    15. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    16. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    17. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    18. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    19. van Vianen, B. G. & Moed, H. F. & van Raan, A. F. J., 1990. "An exploration of the science base of recent technology," Research Policy, Elsevier, vol. 19(1), pages 61-81, February.
    20. Mansfield, Edwin, 1995. "Academic Research Underlying Industrial Innovations:," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 55-65, February.
    21. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    22. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    23. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    24. Chris Freeman & Luc Soete, 1997. "The Economics of Industrial Innovation, 3rd Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262061953, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gnekpe, Christian & Plantec, Quentin, 2023. "Regulatory push-pull and technological knowledge dynamics of circular economy innovation," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    2. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Grunevald, Isabel & Kipper, Liane Mahlmann & Ribas Moraes, Jorge Andre & Haupt, Leandro, 2023. "Scientific contributions on cleaner production through the use of patent information: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Hötte, Kerstin & Jee, Su Jung, 2022. "Knowledge for a warmer world: A patent analysis of climate change adaptation technologies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    5. Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    6. P. G. J. Persoon & R. N. A. Bekkers & F. Alkemade, 2021. "The Knowledge Mobility of Renewable Energy Technology," Papers 2106.10474, arXiv.org, revised Sep 2021.
    7. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    8. Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2022. "The knowledge mobility of Renewable Energy Technology," Energy Policy, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    2. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
    3. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    4. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    5. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    6. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    7. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    8. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
    9. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    10. Naomi Fukuzawa & Takanori Ida, 2016. "Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: the case of Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 629-644, February.
    11. Chul Lee & Gunno Park & Jina Kang, 2018. "The impact of convergence between science and technology on innovation," The Journal of Technology Transfer, Springer, vol. 43(2), pages 522-544, April.
    12. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
    13. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    14. Zhao Qu & Shanshan Zhang, 2020. "References to literature from the business sector in patent documents: a case study of charging technologies for electric vehicles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 867-886, August.
    15. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Joaquín M. Azagra-Caro, 2012. "Access to universities’ public knowledge: who’s more nationalist?," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 671-691, June.
    17. Sofia Patsali, 2021. "University Procurement-led Innovation," GREDEG Working Papers 2021-13, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    18. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
    19. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    20. Chul Lee & Gunno Park & Klaus Marhold & Jina Kang, 2017. "Top management team’s innovation-related characteristics and the firm’s explorative R&D: an analysis based on patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 639-663, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:158:y:2020:i:c:s0040162520309471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.