IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v111y2017i3d10.1007_s11192-017-2357-3.html
   My bibliography  Save this article

Analyzing the time delay between scientific research and technology patents based on the citation distribution model

Author

Listed:
  • Guijie Zhang

    (Harbin Institute of Technology)

  • Yuqiang Feng

    (Harbin Institute of Technology)

  • Guang Yu

    (Harbin Institute of Technology)

  • Luning Liu

    (Harbin Institute of Technology)

  • Yanqiqi Hao

    (Harbin Institute of Technology)

Abstract

Promoting knowledge diffusion and reducing the delay between scientific research and technology patents is important to achieve success in the highly competitive global environment. This paper studies the time delay between scientific research and technology patents, and focuses on the key components of time in the promotion of knowledge transformation. Based on United States Patent and Trademark Office patent data, we apply periodical citation distribution models to the patent process. The results show that our transfer function model is better than others, and is suitable for calculating the delay between basic scientific research activities and technology patents.

Suggested Citation

  • Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
  • Handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2357-3
    DOI: 10.1007/s11192-017-2357-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2357-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2357-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    2. Hartmann, Marcus & Hassan, Ali, 2006. "Application of real options analysis for pharmaceutical R&D project valuation--Empirical results from a survey," Research Policy, Elsevier, vol. 35(3), pages 343-354, April.
    3. Leonardo Costa Ribeiro & Ricardo Machado Ruiz & Américo Tristão Bernardes & Eduardo Motta Albuquerque, 2010. "Matrices of science and technology interactions and patterns of structured growth: implications for development," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 55-75, April.
    4. Adenle, Ademola A. & Haslam, Gareth E. & Lee, Lisa, 2013. "Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries," Energy Policy, Elsevier, vol. 61(C), pages 182-195.
    5. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    6. Mu-Hsuan Huang & Huei-Ru Dong & Dar-Zen Chen, 2013. "The unbalanced performance and regional differences in scientific and technological collaboration in the field of solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 423-438, January.
    7. Guang Yu & Yi-Jun Li, 2010. "Identification of referencing and citation processes of scientific journals based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 249-261, February.
    8. Guang Yu & Yi-Jun Li, 2007. "Parameter identification of the observed citation distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(2), pages 339-348, May.
    9. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    10. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    11. Müller, Kathrin, 2010. "Academic spin-off's transfer speed--Analyzing the time from leaving university to venture," Research Policy, Elsevier, vol. 39(2), pages 189-199, March.
    12. Leo Egghe & Ronald Rousseau, 2000. "The influence of publication delays on the observed aging distribution of scientific literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(2), pages 158-165.
    13. Rui Li & Tamy Chambers & Ying Ding & Guo Zhang & Liansheng Meng, 2014. "Patent citation analysis: Calculating science linkage based on citing motivation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1007-1017, May.
    14. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    15. Li Tang & Philip Shapira, 2011. "Regional development and interregional collaboration in the growth of nanotechnology research in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 299-315, February.
    16. Ronald N. Kostoff & Raymond G. Koytcheff & Clifford G. Y. Lau, 2007. "Global nanotechnology research metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 565-601, March.
    17. D. Schartinger & C. Rammer & J. Fröhlich, 2006. "Knowledge Interactions between Universities and Industry in Austria: Sectoral Patterns and Determinants," Springer Books, in: Innovation, Networks, and Knowledge Spillovers, chapter 7, pages 135-166, Springer.
    18. Guang Yu & Ming-Yang Wang & Da-Ren Yu, 2010. "Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 81-97, July.
    19. Godin, Benoit & Gingras, Yves, 2000. "The place of universities in the system of knowledge production," Research Policy, Elsevier, vol. 29(2), pages 273-278, February.
    20. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    21. Meyer-Krahmer, Frieder & Schmoch, Ulrich, 1998. "Science-based technologies: university-industry interactions in four fields," Research Policy, Elsevier, vol. 27(8), pages 835-851, December.
    22. Bart Van Looy & Edwin Zimmermann & Reinhilde Veugelers & Arnold Verbeek & Johanna Mello & Koenraad Debackere, 2003. "Do science-technology interactions pay off when developing technology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 57(3), pages 355-367, July.
    23. Bekkers, Rudi & Bodas Freitas, Isabel Maria, 2008. "Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Research Policy, Elsevier, vol. 37(10), pages 1837-1853, December.
    24. Guang Yu & Rui Guo & Yi-Jun Li, 2006. "The influence of publication delays on three ISI indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(3), pages 511-527, December.
    25. Bonaccorsi, Andrea & Thoma, Grid, 2007. "Institutional complementarity and inventive performance in nano science and technology," Research Policy, Elsevier, vol. 36(6), pages 813-831, July.
    26. repec:dau:papers:123456789/13785 is not listed on IDEAS
    27. E. Bacchiocchi & F. Montobbio, 2009. "Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations," The Journal of Technology Transfer, Springer, vol. 34(2), pages 169-181, April.
    28. Szu-chia S. Lo, 2010. "Scientific linkage of science research and technology development: a case of genetic engineering research," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 109-120, January.
    29. Hyun Woo Park & Jay Kang, 2009. "Patterns of scientific and technological knowledge flows based on scientific papers and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 811-820, December.
    30. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    31. Jia Zheng & Zhi-yun Zhao & Xu Zhang & Dar-zen Chen & Mu-hsuan Huang, 2014. "International collaboration development in nanotechnology: a perspective of patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 683-702, January.
    32. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    33. D Minbaeva & T Pedersen & I Björkman & C F Fey & H J Park, 2003. "MNC knowledge transfer, subsidiary absorptive capacity, and HRM," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 34(6), pages 586-599, November.
    34. Ying Xie & David Giles, 2011. "A survival analysis of the approval of US patent applications," Applied Economics, Taylor & Francis Journals, vol. 43(11), pages 1375-1384.
    35. Orietta Marsili, 2001. "The Anatomy and Evolution of Industries," Books, Edward Elgar Publishing, number 2272.
    36. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    37. Hicks, Diana M. & Isard, Phoebe A. & Martin, Ben R., 1996. "A morphology of Japanese and European corporate research networks," Research Policy, Elsevier, vol. 25(3), pages 359-378, May.
    38. Qingjun Zhao & Jiancheng Guan, 2013. "Love dynamics between science and technology: some evidences in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 113-132, January.
    39. Guan, Jiancheng & Zhao, Qingjun, 2013. "The impact of university–industry collaboration networks on innovation in nanobiopharmaceuticals," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1271-1286.
    40. Nelson, Andrew J., 2009. "Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion," Research Policy, Elsevier, vol. 38(6), pages 994-1005, July.
    41. Huang, Mu-Hsuan & Huang, Wei-Tzu & Chen, Dar-Zen, 2014. "Technological impact factor: An indicator to measure the impact of academic publications on practical innovation," Journal of Informetrics, Elsevier, vol. 8(1), pages 241-251.
    42. Aashish Mehta & Patrick Herron & Yasuyuki Motoyama & Richard Appelbaum & Timothy Lenoir, 2012. "Globalization and de-globalization in nanotechnology research: the role of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 439-458, November.
    43. Audretsch, David B. & Bozeman, Barry & Combs, Kathryn L. & Feldman, Maryann & Link, Albert N. & Siegel, Donald S. & Stephan, Paula, 2002. "The Economics of Science and Technology," The Journal of Technology Transfer, Springer, vol. 27(2), pages 155-203, April.
    44. Guan, Jiancheng & Liu, Na, 2015. "Invention profiles and uneven growth in the field of emerging nano-energy," Energy Policy, Elsevier, vol. 76(C), pages 146-157.
    45. Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
    46. Monjon, Stephanie & Waelbroeck, Patrick, 2003. "Assessing spillovers from universities to firms: evidence from French firm-level data," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1255-1270, November.
    47. Edler, Jakob & Fier, Heide & Grimpe, Christoph, 2011. "International scientist mobility and the locus of knowledge and technology transfer," Research Policy, Elsevier, vol. 40(6), pages 791-805, July.
    48. Batabyal, Amitrajeet A. & Nijkamp, Peter, 2008. "Is there a tradeoff between average patent pendency and examination errors?," International Review of Economics & Finance, Elsevier, vol. 17(1), pages 150-158.
    49. Wang, Gangbo & Guan, Jiancheng, 2010. "The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology," Journal of Informetrics, Elsevier, vol. 4(3), pages 338-350.
    50. Rudi Bekkers & Bodas Freitas, 2008. "Analysing preferences for knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Grenoble Ecole de Management (Post-Print) hal-01487467, HAL.
    51. Qingjun Zhao & Jiancheng Guan, 2012. "Modeling the dynamic relation between science and technology in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 561-579, February.
    52. Ugo Finardi, 2011. "Time relations between scientific production and patenting of knowledge: the case of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 37-50, October.
    53. Toole, Andrew A., 2012. "The impact of public basic research on industrial innovation: Evidence from the pharmaceutical industry," Research Policy, Elsevier, vol. 41(1), pages 1-12.
    54. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    55. Jung Cheol Shin & Soo Jeung Lee & Yangson Kim, 2012. "Knowledge-based innovation and collaboration: a triple-helix approach in Saudi Arabia," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 311-326, January.
    56. Stuart, Toby E. & Ozdemir, Salih Zeki & Ding, Waverly W., 2007. "Vertical alliance networks: The case of university-biotechnology-pharmaceutical alliance chains," Research Policy, Elsevier, vol. 36(4), pages 477-498, May.
    57. Levin, Richard C, 1988. "Appropriability, R&D Spending, and Technological Performance," American Economic Review, American Economic Association, vol. 78(2), pages 424-428, May.
    58. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    59. Arnold Verbeek & Koenraad Debackere & Marc Luwel, 2003. "Science cited in patents: A geographic "flow" analysis of bibliographic citation patterns in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 241-263, October.
    60. Catherine Lecocq & Bart Looy, 2009. "The impact of collaboration on the technological performance of regions: time invariant or driven by life cycle dynamics?," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 845-865, September.
    61. Guang Yu & Xiao-Hong Wang & Da-Ren Yu, 2005. "The influence of publication delays on impact factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(2), pages 235-246, August.
    62. Xuezhao Wang & Yajuan Zhao & Rui Liu & Jing Zhang, 2013. "Knowledge-transfer analysis based on co-citation clustering," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 859-869, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    2. Mingyang Wang & Jiaqi Zhang & Guangsheng Chen & Kah-Hin Chai, 2019. "Examining the influence of open access on journals’ citation obsolescence by modeling the actual citation process," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1621-1641, June.
    3. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    4. Song, Haoyang & Hou, Jianhua & Zhang, Yang, 2023. "The measurements and determinants of patent technological value: Lifetime, strength, breadth, and dispersion from the technology diffusion perspective," Journal of Informetrics, Elsevier, vol. 17(1).
    5. Soo Jeung Lee, 2019. "Academic entrepreneurship: exploring the effects of academic patenting activity on publication and collaboration among heterogeneous researchers in South Korea," The Journal of Technology Transfer, Springer, vol. 44(6), pages 1993-2013, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guijie Zhang & Guang Yu & Yuqiang Feng & Luning Liu & Zhenhua Yang, 2017. "Improving the publication delay model to characterize the patent granting process," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 621-637, May.
    2. Isabel Maria Bodas Freitas & Aldo Geuna & Federica Rossi, 2011. "University–Industry Interactions: The Unresolved Puzzle," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 11, Edward Elgar Publishing.
    3. Bekkers, Rudi & Bodas Freitas, Isabel Maria, 2008. "Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Research Policy, Elsevier, vol. 37(10), pages 1837-1853, December.
    4. Aurora A. C. Teixeira & Luisa Mota, 2012. "A bibliometric portrait of the evolution, scientific roots and influence of the literature on university–industry links," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 719-743, December.
    5. Rudi Bekkers & Bodas Freitas, 2008. "Analysing preferences for knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Grenoble Ecole de Management (Post-Print) hal-01487467, HAL.
    6. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    7. Adele Parmentola & Marco Ferretti & Eva Panetti, 0. "Exploring the university-industry cooperation in a low innovative region. What differences between low tech and high tech industries?," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-28.
    8. Adele Parmentola & Marco Ferretti & Eva Panetti, 2021. "Exploring the university-industry cooperation in a low innovative region. What differences between low tech and high tech industries?," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1469-1496, September.
    9. De Fuentes, Claudia & Dutrénit, Gabriela, 2012. "Best channels of academia–industry interaction for long-term benefit," Research Policy, Elsevier, vol. 41(9), pages 1666-1682.
    10. Nelson, Andrew J., 2012. "Putting university research in context: Assessing alternative measures of production and diffusion at Stanford," Research Policy, Elsevier, vol. 41(4), pages 678-691.
    11. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    12. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    13. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    14. A. Bellucci & L. Pennacchio, 2016. "University knowledge and firm innovation: evidence from European countries," The Journal of Technology Transfer, Springer, vol. 41(4), pages 730-752, August.
    15. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
    16. Soo Jeung Lee, 2019. "Academic entrepreneurship: exploring the effects of academic patenting activity on publication and collaboration among heterogeneous researchers in South Korea," The Journal of Technology Transfer, Springer, vol. 44(6), pages 1993-2013, December.
    17. Stanislav Zaichenko, 2012. "Transferring R&D Outputs to Industry: Strategies of R&D Organizations," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 6(4), pages 48-58.
    18. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    19. Martina Fromhold-Eisebith & Claudia Werker, 2013. "Universities’ functions in knowledge transfer: a geographical perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 51(3), pages 621-643, December.
    20. Victoria Galan-Muros & Todd Davey, 2019. "The UBC ecosystem: putting together a comprehensive framework for university-business cooperation," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1311-1346, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2357-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.