IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v70y2007i3d10.1007_s11192-007-0303-5.html
   My bibliography  Save this article

Global nanotechnology research metrics

Author

Listed:
  • Ronald N. Kostoff

    (Office of Naval Research)

  • Raymond G. Koytcheff

    (Office of Naval Research)

  • Clifford G. Y. Lau

    (Institute for Defense Analyses)

Abstract

Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) was obtained using bibliometrics. A novel addition was the use of institution and country auto-correlation maps to show co-publishing networks among institutions and among countries, and the use of institution-phrase and country-phrase cross-correlation maps to show institution networks and country networks based on use of common terminology (proxy for common interests). The use of factor matrices quantified further the strength of the linkages among institutions and among countries, and validated the co-publishing networks shown graphically on the maps.

Suggested Citation

  • Ronald N. Kostoff & Raymond G. Koytcheff & Clifford G. Y. Lau, 2007. "Global nanotechnology research metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 565-601, March.
  • Handle: RePEc:spr:scient:v:70:y:2007:i:3:d:10.1007_s11192-007-0303-5
    DOI: 10.1007/s11192-007-0303-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-0303-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-0303-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    2. Zhou, Ping & Leydesdorff, Loet, 2006. "The emergence of China as a leading nation in science," Research Policy, Elsevier, vol. 35(1), pages 83-104, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goio Etxebarria & Mikel Gomez-Uranga & Jon Barrutia, 2012. "Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 253-268, April.
    2. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    3. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    4. Mario Coccia & Ugo Finardi & Diego Margon, 2010. "Research trends in nanotechnology studies across geo-economic areas," CERIS Working Paper 201005, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    5. Yonghan Ju & So Young Sohn, 2015. "Identifying patterns in rare earth element patents based on text and data mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 389-410, January.
    6. Jiancheng Guan & Gangbo Wang, 2010. "A comparative study of research performance in nanotechnology for China’s inventor–authors and their non-inventing peers," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 331-343, August.
    7. Mario Coccia, 2011. "Evolutionary dynamics and scientific flows of nanotechnology research across geo-economic areas," CERIS Working Paper 201101, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    8. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    9. Xianwen Wang & Shenmeng Xu & Di Liu & Yongxia Liang, 2012. "The role of Chinese–American scientists in China–US scientific collaboration: a study in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 737-749, June.
    10. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    11. Ronald N. Kostoff & Ryan B. Barth & Clifford G. Y. Lau, 2008. "Relation of seminal nanotechnology document production to total nanotechnology document production — South Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 43-67, July.
    12. Jiancheng Guan & He Wei, 2015. "A bilateral comparison of research performance at an institutional level," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 147-173, July.
    13. Bonaccorsi, Andrea & Vargas, Juan, 2010. "Proliferation dynamics in new sciences," Research Policy, Elsevier, vol. 39(8), pages 1034-1050, October.
    14. Loet Leydesdorff, 2008. "The delineation of nanoscience and nanotechnology in terms of journals and patents: A most recent update," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 159-167, July.
    15. Kostoff, Ronald N., 2008. "Comparison of China/USA science and technology performance," Journal of Informetrics, Elsevier, vol. 2(4), pages 354-363.
    16. Mariana Balan & Cosmin Olteanu, 2017. "Brain Drain In The Globalization Era: The Case Of Romania," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 26-35, June.
    17. Marisela Rodríguez-Salvador & Rosa María Rio-Belver & Gaizka Garechana-Anacabe, 2017. "Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-22, June.
    18. Ehsan Mohammadi, 2012. "Knowledge mapping of the Iranian nanoscience and technology: a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 593-608, September.
    19. Li Tang & Philip Shapira, 2011. "Regional development and interregional collaboration in the growth of nanotechnology research in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 299-315, February.
    20. Guang Yu & Ming-Yang Wang & Da-Ren Yu, 2010. "Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 81-97, July.
    21. Catherine Beaudry & Andrea Schiffauerova, 2011. "Is Canadian intellectual property leaving Canada? A study of nanotechnology patenting," The Journal of Technology Transfer, Springer, vol. 36(6), pages 665-679, December.
    22. Li Tang & Philip Shapira, 2011. "China–US scientific collaboration in nanotechnology: patterns and dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 1-16, July.
    23. Arnaldi, Simone, 2014. "Exploring imaginative geographies of nanotechnologies in news media images of Italian nanoscientists," Technology in Society, Elsevier, vol. 37(C), pages 49-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Thaiane Moreira & de Albuquerque, Sofia & Toth, Janderson Pereira & Bello, Debora Zava, 2018. "International cooperation networks of the BRICS bloc," SocArXiv b6x43, Center for Open Science.
    2. Yves Gingras & Mahdi Khelfaoui, 2018. "Assessing the effect of the United States’ “citation advantage” on other countries’ scientific impact as measured in the Web of Science (WoS) database," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 517-532, February.
    3. Jo Royle & Louisa Coles & Dorothy Williams & Paul Evans, 2007. "Publishing in international journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(1), pages 59-86, April.
    4. Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2019. "A new parameter for (normalized) evaluation of H-index: countries as a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1065-1078, March.
    5. Gregory J Hather & Winston Haynes & Roger Higdon & Natali Kolker & Elizabeth A Stewart & Peter Arzberger & Patrick Chain & Dawn Field & B Robert Franza & Biaoyang Lin & Folker Meyer & Vural Ozdemir & , 2010. "The United States of America and Scientific Research," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-9, August.
    6. Reinhilde Veugelers, 2010. "Towards a multipolar science world: trends and impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 439-456, February.
    7. Zhenyue Zhao & Xuelian Pan & Weina Hua, 2021. "Comparative analysis of the research productivity, publication quality, and collaboration patterns of top ranked library and information science schools in China and the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 931-950, February.
    8. Qingjun Zhao & Jiancheng Guan, 2011. "International collaboration of three ‘giants’ with the G7 countries in emerging nanobiopharmaceuticals," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(1), pages 159-170, April.
    9. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    10. Kostoff, Ronald N., 2008. "Comparison of China/USA science and technology performance," Journal of Informetrics, Elsevier, vol. 2(4), pages 354-363.
    11. Wong, Chan-Yuan & Goh, Kim-Leng, 2010. "Growth behavior of publications and patents: A comparative study on selected Asian economies," Journal of Informetrics, Elsevier, vol. 4(4), pages 460-474.
    12. Guan, Jiancheng & Ma, Nan, 2007. "China's emerging presence in nanoscience and nanotechnology: A comparative bibliometric study of several nanoscience `giants'," Research Policy, Elsevier, vol. 36(6), pages 880-886, July.
    13. Peder Olesen Larsen, 2008. "The state of the art in publication counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 77(2), pages 235-251, November.
    14. Frenken, Koen & Hardeman, Sjoerd & Hoekman, Jarno, 2009. "Spatial scientometrics: Towards a cumulative research program," Journal of Informetrics, Elsevier, vol. 3(3), pages 222-232.
    15. Hrvoje Matakovic & Mirjana Pejic Bach & Iva Radocaj Novak, 2013. "Scientific Productivity in Transition Countries: Trends and Obstacles," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(2), pages 174-189.
    16. Loet Leydesdorff & Caroline Wagner, 2009. "Is the United States losing ground in science? A global perspective on the world science system," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 23-36, January.
    17. Tianwei He, 2009. "International scientific collaboration of China with the G7 countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 571-582, September.
    18. Lu, Kun & Wolfram, Dietmar, 2010. "Geographic characteristics of the growth of informetrics literature 1987–2008," Journal of Informetrics, Elsevier, vol. 4(4), pages 591-601.
    19. Elias Sanz-Casado & Carlos García-Zorita & Ronald Rousseau, 2016. "Using h-cores to study the most-cited articles of the twenty-first century," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 243-261, July.
    20. Thomas Heinze & Arlette Jappe & David Pithan, 2019. "From North American hegemony to global competition for scientific leadership? Insights from the Nobel population," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:70:y:2007:i:3:d:10.1007_s11192-007-0303-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.