IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v93y2012i2d10.1007_s11192-012-0687-8.html
   My bibliography  Save this article

Globalization and de-globalization in nanotechnology research: the role of China

Author

Listed:
  • Aashish Mehta

    (University of California-Santa Barbara)

  • Patrick Herron

    (Duke University)

  • Yasuyuki Motoyama

    (Ewing Marion Kauffman Foundation)

  • Richard Appelbaum

    (University of California-Santa Barbara)

  • Timothy Lenoir

    (Duke University)

Abstract

The share of nanotechnology publications involving authors from more than one country more than doubled in the 1990s, but then fell again until 2004, before recovering somewhat during the latter years of the decade. Meanwhile, the share of nanotechnology papers involving at least one Chinese author increased substantially over the last two decades. Papers involving Chinese authors are far less likely to be internationally co-authored than papers involving authors from other countries. Nonetheless, this appears to be changing as Chinese nanotechnology research becomes more advanced. An arithmetic decomposition confirms that China’s growing share of such research accounts, in large part, for the observed stagnation of international collaboration. Thus two aspects of the globalization of science can work in opposing directions: diffusion to initially less scientifically advanced countries can depress international collaboration rates, while at the same time scientific advances in such countries can reverse this trend. We find that the growth of China’s scientific community explains some, but not all of the dynamics of China’s international collaboration rate. We therefore provide an institutional account of these dynamics, drawing on Stichweh’s [Social Science information 35(2):327–340, 1996] original paper on international scientific collaboration, which, in examining the interrelated development of national and international scientific networks, predicts a transitional phase during which science becomes a more national enterprise, followed by a phase marked by accelerating international collaboration. Validating the application of this approach, we show that Stichweh’s predictions, based on European scientific communities in the 18th and 19th centuries, seem to apply to the Chinese scientific community in the 21st century.

Suggested Citation

  • Aashish Mehta & Patrick Herron & Yasuyuki Motoyama & Richard Appelbaum & Timothy Lenoir, 2012. "Globalization and de-globalization in nanotechnology research: the role of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 439-458, November.
  • Handle: RePEc:spr:scient:v:93:y:2012:i:2:d:10.1007_s11192-012-0687-8
    DOI: 10.1007/s11192-012-0687-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-012-0687-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-012-0687-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tibor Braun & Sándor Zsindely & Ildikó Dióspatonyi & Erika Zádor, 2007. "Gatekeeping patterns in nano-titled journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 651-667, March.
    2. Huang, Can & Notten, Ad & Rasters, Nico, 2008. "Nanotechnology Publications and Patents: A Review of Social Science Studies and Search Strategies," MERIT Working Papers 2008-058, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Dag W. Aksnes, 2006. "Citation rates and perceptions of scientific contribution," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(2), pages 169-185, January.
    4. Li Tang & Philip Shapira, 2011. "Regional development and interregional collaboration in the growth of nanotechnology research in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 299-315, February.
    5. Liu, Feng-chao & Simon, Denis Fred & Sun, Yu-tao & Cao, Cong, 2011. "China's innovation policies: Evolution, institutional structure, and trajectory," Research Policy, Elsevier, vol. 40(7), pages 917-931, September.
    6. Shengli Ren & Ronald Rousseau, 2002. "International visibility of Chinese scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(3), pages 389-405, March.
    7. Philip Shapira & Jue Wang, 2010. "Follow the money," Nature, Nature, vol. 468(7324), pages 627-628, December.
    8. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    9. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    10. Wagner, Caroline S. & Leydesdorff, Loet, 2005. "Network structure, self-organization, and the growth of international collaboration in science," Research Policy, Elsevier, vol. 34(10), pages 1608-1618, December.
    11. Min-Wei Lin & Jingjing Zhang, 2007. "Language trends in nanoscience and technology: The case of Chinese-language publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 555-564, March.
    12. Defazio, Daniela & Lockett, Andy & Wright, Mike, 2009. "Funding incentives, collaborative dynamics and scientific productivity: Evidence from the EU framework program," Research Policy, Elsevier, vol. 38(2), pages 293-305, March.
    13. Mogoutov, Andrei & Kahane, Bernard, 2007. "Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking," Research Policy, Elsevier, vol. 36(6), pages 893-903, July.
    14. Leydesdorff, Loet & Wagner, Caroline S., 2008. "International collaboration in science and the formation of a core group," Journal of Informetrics, Elsevier, vol. 2(4), pages 317-325.
    15. Wolfgang Glänzel, 2001. "National characteristics in international scientific co-authorship relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 69-115, April.
    16. Anastassios Pouris, 2007. "Nanoscale research in South Africa: A mapping exercise based on scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 541-553, March.
    17. Politimi Eleni Valkimadi & Drosos E. Karageorgopoulos & Harissios Vliagoftis & Matthew E. Falagas, 2009. "Increasing dominance of English in publications archived by PubMed," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(1), pages 219-223, October.
    18. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Islam, Nazrul & Gyoshev, Stanley & Amona, Daniel, 2020. "External complexities in discontinuous innovation-based R&D projects: Analysis of inter-firm collaborative partnerships that lead to abundance," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    2. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
    3. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    4. Jia Zheng & Zhi-yun Zhao & Xu Zhang & Dar-zen Chen & Mu-hsuan Huang, 2014. "International collaboration development in nanotechnology: a perspective of patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 683-702, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
    2. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    3. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    4. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    5. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    6. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    7. Philip Shapira & Seokbeom Kwon & Jan Youtie, 2017. "Tracking the emergence of synthetic biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1439-1469, September.
    8. Li Tang & Philip Shapira, 2011. "China–US scientific collaboration in nanotechnology: patterns and dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 1-16, July.
    9. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    10. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    11. Weishu Liu & Mengdi Gu & Guangyuan Hu & Chao Li & Huchang Liao & Li Tang & Philip Shapira, 2014. "Profile of developments in biomass-based bioenergy research: a 20-year perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 507-521, May.
    12. Scellato, Giuseppe & Franzoni, Chiara & Stephan, Paula, 2015. "Migrant scientists and international networks," Research Policy, Elsevier, vol. 44(1), pages 108-120.
    13. Stanislav Avdeev, 2021. "International collaboration in higher education research: A gravity model approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5569-5588, July.
    14. Theresa Velden & Asif-ul Haque & Carl Lagoze, 2010. "A new approach to analyzing patterns of collaboration in co-authorship networks: mesoscopic analysis and interpretation," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 219-242, October.
    15. Loet Leydesdorff & Caroline Wagner, 2009. "Is the United States losing ground in science? A global perspective on the world science system," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 23-36, January.
    16. Fengchao Liu & Na Zhang & Cong Cao, 2017. "An evolutionary process of global nanotechnology collaboration: a social network analysis of patents at USPTO," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1449-1465, June.
    17. T. Gorjiara & C. Baldock, 2014. "Nanoscience and nanotechnology research publications: a comparison between Australia and the rest of the world," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 121-148, July.
    18. Goio Etxebarria & Mikel Gomez-Uranga & Jon Barrutia, 2012. "Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 253-268, April.
    19. Weishu Liu & Li Tang & Mengdi Gu & Guangyuan Hu, 2015. "Feature report on China: a bibliometric analysis of China-related articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 503-517, January.
    20. Laurent R. Bergé, 2017. "Network proximity in the geography of research collaboration," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 785-815, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:93:y:2012:i:2:d:10.1007_s11192-012-0687-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.