IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v89y2011i1d10.1007_s11192-011-0434-6.html
   My bibliography  Save this article

The structure and analysis of nanotechnology co-author and citation networks

Author

Listed:
  • Selen Onel

    (Northeastern University)

  • Abe Zeid

    (Northeastern University)

  • Sagar Kamarthi

    (Northeastern University)

Abstract

Research activities and collaborations in nanoscale science and engineering have major implications for advancing technological frontiers in many fields including medicine, electronics, energy, and communication. The National Nanotechnology Initiative (NNI) promotes efforts to cultivate effective research and collaborations among nano scientists and engineers to accelerate the advancement of nanotechnology and its commercialization. As of August 2008, there have been over 800 products considered to benefit from nanotechnology directly or indirectly. However, today’s accomplishments in nanotechnology cannot be transformed into commercial products without productive collaborations among experts from disparate research areas such as chemistry, physics, math, biology, engineering, manufacturing, environmental sciences, and social sciences. To study the patterns of collaboration, we build and analyze the collaboration network of scientists and engineers who conduct research in nanotechnology. We study the structure of information flow through citation network of papers authored by nano area scientists. We believe that the study of nano area co-author and paper citation networks improve our understanding of patterns and trends of the current research efforts in this field. We construct these networks based on the publication data collected for years ranging 1993 through 2008 from the scientific literature database “Web of Science”. We explore those networks to find out whether they follow power-law degree distributions and/or if they have a signature of hierarchy. We investigate the small-world characteristics and the existence of possible community structures in those networks. We estimate the statistical properties of the networks and interpret their significance with respect to the nano field.

Suggested Citation

  • Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
  • Handle: RePEc:spr:scient:v:89:y:2011:i:1:d:10.1007_s11192-011-0434-6
    DOI: 10.1007/s11192-011-0434-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0434-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-011-0434-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Ramon Ferrer i Cancho & Christiaan Janssen & Ricard V. Solé, 2001. "The Topology of Technology Graphs: Small World Patterns in Electronic Circuits," Working Papers 01-05-029, Santa Fe Institute.
    3. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    5. Ann E. Krause & Kenneth A. Frank & Doran M. Mason & Robert E. Ulanowicz & William W. Taylor, 2003. "Compartments revealed in food-web structure," Nature, Nature, vol. 426(6964), pages 282-285, November.
    6. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    7. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    8. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    9. E. A. Leicht & G. Clarkson & K. Shedden & M. E.J. Newman, 2007. "Large-scale structure of time evolving citation networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 59(1), pages 75-83, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goio Etxebarria & Mikel Gomez-Uranga & Jon Barrutia, 2012. "Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 253-268, April.
    2. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
    3. Fengchao Liu & Na Zhang & Cong Cao, 2017. "An evolutionary process of global nanotechnology collaboration: a social network analysis of patents at USPTO," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1449-1465, June.
    4. Sachini Weerasekara & Zhenyuan Lu & Burcu Ozek & Jacqueline Isaacs & Sagar Kamarthi, 2022. "Trends in Adopting Industry 4.0 for Asset Life Cycle Management for Sustainability: A Keyword Co-Occurrence Network Review and Analysis," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    5. Dennis Essers & Francesco Grigoli & Evgenia Pugacheva, 2022. "Network effects and research collaborations: evidence from IMF Working Paper co-authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7169-7192, December.
    6. József Popp & Péter Balogh & Judit Oláh & Sebastian Kot & Mónika Harangi Rákos & Péter Lengyel, 2018. "Social Network Analysis of Scientific Articles Published by Food Policy," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    7. Jia Zheng & Zhi-yun Zhao & Xu Zhang & Dar-zen Chen & Mu-hsuan Huang, 2014. "International collaboration development in nanotechnology: a perspective of patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 683-702, January.
    8. Chen, Shenwen & Ren, Siqiao & Zheng, Lei & Yang, Hanxin & Du, Wenbo & Cao, Xianbin, 2022. "A comparison study of educational scientific collaboration in China and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    9. Chenxi Yuan & Guoyan Li & Sagar Kamarthi & Xiaoning Jin & Mohsen Moghaddam, 2022. "Trends in intelligent manufacturing research: a keyword co-occurrence network based review," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 425-439, February.
    10. Ehsan Mohammadi, 2012. "Knowledge mapping of the Iranian nanoscience and technology: a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 593-608, September.
    11. Vivek Kumar Singh & Sumit Kumar Banshal & Khushboo Singhal & Ashraf Uddin, 2015. "Scientometric mapping of research on ‘Big Data’," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 727-741, November.
    12. Aashish Mehta & Patrick Herron & Yasuyuki Motoyama & Richard Appelbaum & Timothy Lenoir, 2012. "Globalization and de-globalization in nanotechnology research: the role of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 439-458, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    2. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    3. Pagani, Giuliano Andrea & Aiello, Marco, 2014. "Power grid complex network evolutions for the smart grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 248-266.
    4. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    5. Biao Xiong & Bixin Li & Rong Fan & Qingzhong Zhou & Wu Li, 2017. "Modeling and Simulation for Effectiveness Evaluation of Dynamic Discrete Military Supply Chain Networks," Complexity, Hindawi, vol. 2017, pages 1-9, October.
    6. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    7. Nie, Tingyuan & Fan, Bo & Wang, Zhenhao, 2022. "Complexity and robustness of weighted circuit network of placement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    8. Cárdenas, J.P. & Mouronte, M.L. & Benito, R.M. & Losada, J.C., 2010. "Compatibility as underlying mechanism behind the evolution of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1789-1798.
    9. Daniel Straulino & Mattie Landman & Neave O'Clery, 2020. "A bi-directional approach to comparing the modular structure of networks," Papers 2010.06568, arXiv.org.
    10. Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
    11. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    12. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    13. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    14. Piccardi, Carlo & Calatroni, Lisa & Bertoni, Fabio, 2010. "Communities in Italian corporate networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5247-5258.
    15. Cárdenas, J.P. & Mouronte, M.L. & Moyano, L.G. & Vargas, M.L. & Benito, R.M., 2010. "On the robustness of Spanish telecommunication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4209-4216.
    16. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    17. Rafael Rentería-Ramos & Rafael Hurtado-Heredia & B Piedad Urdinola, 2019. "Morbi-Mortality of the Victims of Internal Conflict and Poor Population in the Risaralda Province, Colombia," IJERPH, MDPI, vol. 16(9), pages 1-18, May.
    18. Serra, Roberto & Villani, Marco & Agostini, Luca, 2004. "On the dynamics of random Boolean networks with scale-free outgoing connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 665-673.
    19. Chungmok Lee & Minh Pham & Myong K. Jeong & Dohyun Kim & Dennis K. J. Lin & Wanpracha Art Chavalitwongse, 2015. "A Network Structural Approach to the Link Prediction Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 249-267, May.
    20. Carlo Piccardi, 2011. "Finding and Testing Network Communities by Lumped Markov Chains," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:89:y:2011:i:1:d:10.1007_s11192-011-0434-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.