IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v43y2018i2d10.1007_s10961-016-9480-9.html
   My bibliography  Save this article

The impact of convergence between science and technology on innovation

Author

Listed:
  • Chul Lee

    (Seoul National University)

  • Gunno Park

    (Samsung SDS)

  • Jina Kang

    (Seoul National University
    Seoul National University)

Abstract

This study investigates the effects of convergence of science and technology on innovation impact, specifically how convergence helps R&D organizations to apply scientific knowledge to their R&D activities. In addition to direct effects of convergence, we address the moderating effects of scientific capacity, knowledge spillover, and knowledge maturity from the knowledge side. The empirical analysis, which employs a zero inflated negative binomial regression model uses data on 2074 patents granted to US organizations from the pharmaceutical industry. The results show that an increase in the proportion of scientific knowledge in convergence has a positive and curvilinear relationship with innovation impact. Also, we find that the organization’s scientific capacity, regional scientific knowledge spillover, and knowledge maturity positively moderate the relationship between convergence and innovation impact. Our findings underline the importance of convergence between science and technology as well as provide implications on how to improve the outcome of an organization’s research and development process.

Suggested Citation

  • Chul Lee & Gunno Park & Jina Kang, 2018. "The impact of convergence between science and technology on innovation," The Journal of Technology Transfer, Springer, vol. 43(2), pages 522-544, April.
  • Handle: RePEc:kap:jtecht:v:43:y:2018:i:2:d:10.1007_s10961-016-9480-9
    DOI: 10.1007/s10961-016-9480-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10961-016-9480-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10961-016-9480-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Kogut & Udo Zander, 1992. "Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology," Organization Science, INFORMS, vol. 3(3), pages 383-397, August.
    2. Jeff S. Armstrong & Michael R. Darby & Lynne G. Zucker, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    3. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    4. Clive Lawson & Edward Lorenz, 1999. "Collective Learning, Tacit Knowledge and Regional Innovative Capacity," Regional Studies, Taylor & Francis Journals, vol. 33(4), pages 305-317.
    5. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    6. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    7. Luc Anselin & Attila Varga & Zoltan Acs, 2008. "Local Geographic Spillovers Between University Research and High Technology Innovations," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 9, pages 95-121, Edward Elgar Publishing.
    8. Gambardella, Alfonso, 1992. "Competitive advantages from in-house scientific research: The US pharmaceutical industry in the 1980s," Research Policy, Elsevier, vol. 21(5), pages 391-407, October.
    9. Jaffe, Adam B, 1989. "Real Effects of Academic Research," American Economic Review, American Economic Association, vol. 79(5), pages 957-970, December.
    10. Julia Porter Liebeskind & Amalya Lumerman Oliver & Lynne Zucker & Marilynn Brewer, 1996. "Social networks, Learning, and Flexibility: Sourcing Scientific Knowledge in New Biotechnology Firms," Organization Science, INFORMS, vol. 7(4), pages 428-443, August.
    11. Bottazzi, Laura & Peri, Giovanni, 2003. "Innovation and spillovers in regions: Evidence from European patent data," European Economic Review, Elsevier, vol. 47(4), pages 687-710, August.
    12. Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
    13. Paul Almeida & Jan Hohberger & Pedro Parada, 2011. "Individual scientific collaborations and firm-level innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(6), pages 1571-1599, December.
    14. Linda Argote & Bill McEvily & Ray Reagans, 2003. "Managing Knowledge in Organizations: An Integrative Framework and Review of Emerging Themes," Management Science, INFORMS, vol. 49(4), pages 571-582, April.
    15. Ingemar Dierickx & Karel Cool, 1989. "Asset Stock Accumulation and Sustainability of Competitive Advantage," Management Science, INFORMS, vol. 35(12), pages 1504-1511, December.
    16. Gary P. Pisano, 1994. "Knowledge, Integration, and the Locus of Learning: An Empirical Analysis of Process Development," Strategic Management Journal, Wiley Blackwell, vol. 15(S1), pages 85-100, December.
    17. Paul Almeida & Bruce Kogut, 1999. "Localization of Knowledge and the Mobility of Engineers in Regional Networks," Management Science, INFORMS, vol. 45(7), pages 905-917, July.
    18. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    19. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    20. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    21. Gibbons, Michael & Johnston, Ron, 1974. "The roles of science in technological innovation," Research Policy, Elsevier, vol. 3(3), pages 220-242, November.
    22. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    23. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    24. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    25. Grupp, Hariolf, 1996. "Spillover Effects and the Science Base of Innovations Reconsidered: An Empirical Approach," Journal of Evolutionary Economics, Springer, vol. 6(2), pages 175-197, May.
    26. Yong-Gil Lee & Jeong-Dong Lee & Yong-Il Song & Se-Jun Lee, 2007. "An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 27-39, January.
    27. Ingemar Dierickx & Karel Cool, 1989. "Asset Stock Accumulation and the Sustainability of Competitive Advantage: Reply," Management Science, INFORMS, vol. 35(12), pages 1514-1514, December.
    28. Tijssen, Robert J. W., 2002. "Science dependence of technologies: evidence from inventions and their inventors," Research Policy, Elsevier, vol. 31(4), pages 509-526, May.
    29. Ikujiro Nonaka, 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, INFORMS, vol. 5(1), pages 14-37, February.
    30. Brooks, Harvey, 1994. "The relationship between science and technology," Research Policy, Elsevier, vol. 23(5), pages 477-486, September.
    31. Olav Sorenson, 2005. "Social networks and industrial geography," Springer Books, in: Uwe Cantner & Elias Dinopoulos & Robert F. Lanzillotti (ed.), Entrepreneurships, the New Economy and Public Policy, pages 55-69, Springer.
    32. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    33. repec:wip:wpaper:6 is not listed on IDEAS
    34. van Vianen, B. G. & Moed, H. F. & van Raan, A. F. J., 1990. "An exploration of the science base of recent technology," Research Policy, Elsevier, vol. 19(1), pages 61-81, February.
    35. Nightingale, Paul, 1998. "A cognitive model of innovation," Research Policy, Elsevier, vol. 27(7), pages 689-709, November.
    36. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    37. Donna Marie DeCarolis & David L. Deeds, 1999. "The impact of stocks and flows of organizational knowledge on firm performance: an empirical investigation of the biotechnology industry," Strategic Management Journal, Wiley Blackwell, vol. 20(10), pages 953-968, October.
    38. Aditi Mehta & Marc Rysman & Tim Simcoe, 2010. "Identifying the age profile of patent citations: new estimates of knowledge diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(7), pages 1179-1204, November/.
    39. Udo Zander & Bruce Kogut, 1995. "Knowledge and the Speed of the Transfer and Imitation of Organizational Capabilities: An Empirical Test," Organization Science, INFORMS, vol. 6(1), pages 76-92, February.
    40. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    41. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    42. Gautam Ahuja & Riitta Katila, 2004. "Where do resources come from? The role of idiosyncratic situations," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 887-907, August.
    43. DeBresson, Chris & Amesse, Fernand, 1991. "Networks of innovators :A review and introduction to the issue," Research Policy, Elsevier, vol. 20(5), pages 363-379, October.
    44. R. J. W. Tussen & R. K. Buter & Th. N. van Leeuwen, 2000. "Technological Relevance of Science: An Assessment of Citation Linkages between Patents and Research Papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 389-412, February.
    45. Joan Penner‐Hahn & J. Myles Shaver, 2005. "Does international research and development increase patent output? An analysis of Japanese pharmaceutical firms," Strategic Management Journal, Wiley Blackwell, vol. 26(2), pages 121-140, February.
    46. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    47. Abernathy, William J. & Clark, Kim B., 1985. "Innovation: Mapping the winds of creative destruction," Research Policy, Elsevier, vol. 14(1), pages 3-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    2. Luisa Fernanda Echeverría-King & Jorge Pinto & María Angela Lorena Mosquera-Montoya, 2021. "Inversión en actividades de ciencia, tecnología e innovación: el caso de Colombia y Ecuador," Revista CEA, Instituto Tecnológico Metropolitano, vol. 7(14), July.
    3. Zhang, Wei & Zhang, Ting & Li, Hangyu & Zhang, Han, 2022. "Dynamic spillover capacity of R&D and digital investments in China's manufacturing industry under long-term technological progress based on the industry chain perspective," Technology in Society, Elsevier, vol. 71(C).
    4. Gang Chen & James J. Zhang & N. David Pifer, 2019. "Corporate Governance Structure, Financial Capability, and the R&D Intensity in Chinese Sports Sector: Evidence from Listed Sports Companies," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    5. Qian Xu & Hua Cheng, 2021. "Research on the Evolution of Textile Technological Convergence in China," Sustainability, MDPI, vol. 13(5), pages 1-13, February.
    6. Eunmi Tatum Lee & Young-Ryeol Park & Jooyoung Kwak, 2023. "Knowledge distance and innovation performance: the moderating role of internationalization breadth and depth," Asian Business & Management, Palgrave Macmillan, vol. 22(3), pages 1131-1154, July.
    7. Joao J. M. Ferreira & Cristina Fernandes & Vanessa Ratten, 2019. "The effects of technology transfers and institutional factors on economic growth: evidence from Europe and Oceania," The Journal of Technology Transfer, Springer, vol. 44(5), pages 1505-1528, October.
    8. Elona Marku & Manuel Castriotta & Michela Loi & Maria Chiara Di Guardo, 2021. "General Purpose Technology: The Blockchain Domain," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(11), pages 192-192, July.
    9. Jing Li & Qian Yu, 2023. "The Evolutionary Characteristics and Interaction of Interdisciplinarity and Scientific Collaboration under the Convergence Paradigm: Analysis in the Field of Materials Genome Engineering," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    10. Emílio José Montero Arruda Filho & Cristiana Fernandes De Muylder & Airton Cardoso Cançado & Ruby Roy Dholakia & Angela Paladino, 2019. "Technology Perspectives and Innovative Scenarios Applied in the Amazon Region," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 23(5), pages 607-618.
    11. Kai Guo & Tiantian Zhang & Yan Liang & Jiyao Zhao & Xiangmin Zhang, 2023. "Research on the promotion path of green technology innovation of an enterprise from the perspective of technology convergence: configuration analysis using new energy vehicles as an example," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4989-5008, June.
    12. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    13. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    2. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    3. Belderbos, Rene & Leten, Bart & Suzuki, Shinya, 2009. "Does Excellence in Academic Research Attract Foreign R&D?," MERIT Working Papers 2009-066, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    4. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    5. SUZUKI Shinya & Rene BELDERBOS & KWON Hyeog Ug & FUKAO Kyoji, 2012. "The Impact of Host Countries' University Research and University-Industry Collaboration on the Location of Research and Development: Evidence from Japanese multinational firms," Discussion papers 12080, Research Institute of Economy, Trade and Industry (RIETI).
    6. René Belderbos & Bart Leten & Shinya Suzuki, 2017. "Scientific research, firm heterogeneity, and foreign R&D locations of multinational firms," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(3), pages 691-711, September.
    7. Soh, Pek-Hooi & Subramanian, Annapoornima M., 2014. "When do firms benefit from university–industry R&D collaborations? The implications of firm R&D focus on scientific research and technological recombination," Journal of Business Venturing, Elsevier, vol. 29(6), pages 807-821.
    8. Francisco Polidoro & Curba Morris Lampert & Minyoung Kim, 2022. "External knowledge sourcing, knowledge spillovers, and internal collaboration: The effects of intrafirm linkages on firm‐university co‐authorship linkages," Strategic Management Journal, Wiley Blackwell, vol. 43(13), pages 2742-2776, December.
    9. Hohberger, Jan & Almeida, Paul & Parada, Pedro, 2015. "The direction of firm innovation: The contrasting roles of strategic alliances and individual scientific collaborations," Research Policy, Elsevier, vol. 44(8), pages 1473-1487.
    10. René Belderbos & Marcelina Grabowska & Stijn Kelchtermans & Bart Leten & Jojo Jacob & Massimo Riccaboni, 2021. "Whither geographic proximity? Bypassing local R&D units in foreign university collaboration," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(7), pages 1302-1330, September.
    11. Chul Lee & Gunno Park & Klaus Marhold & Jina Kang, 2017. "Top management team’s innovation-related characteristics and the firm’s explorative R&D: an analysis based on patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 639-663, May.
    12. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    13. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    14. Rotolo, Daniele & Camerani, Roberto & Grassano, Nicola & Martin, Ben R., 2022. "Why do firms publish? A systematic literature review and a conceptual framework," Research Policy, Elsevier, vol. 51(10).
    15. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    16. Roberto Camerani & Daniele Rotolo & Nicola Grassano, 2018. "Do Firms Publish? A Multi-Sectoral Analysis," SPRU Working Paper Series 2018-21, SPRU - Science Policy Research Unit, University of Sussex Business School.
    17. Hanne Peeters & Julie Callaert & Bart Looy, 2020. "Do firms profit from involving academics when developing technology?," The Journal of Technology Transfer, Springer, vol. 45(2), pages 494-521, April.
    18. Jong, Simcha & Slavova, Kremena, 2014. "When publications lead to products: The open science conundrum in new product development," Research Policy, Elsevier, vol. 43(4), pages 645-654.
    19. Ann-Kathrine Ejsing & Ulrich Kaiser & Hans Christian Kongsted & Keld Laursen, 2013. "The Role of University Scientist Mobility for Industrial Innovation," Working Papers 332, University of Zurich, Department of Business Administration (IBW).
    20. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.

    More about this item

    Keywords

    Convergence; Knowledge; Science; Technology; R&D; Innovation;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • O39 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:43:y:2018:i:2:d:10.1007_s10961-016-9480-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.