IDEAS home Printed from https://ideas.repec.org/a/eee/eecrev/v128y2020ics0014292120301306.html
   My bibliography  Save this article

The return of Malthus? Resource constraints in an era of declining population growth

Author

Listed:
  • Naso, Pedro
  • Lanz, Bruno
  • Swanson, Tim

Abstract

Will natural resources comprise an important constraint on economic development in the 21st century? We use a macroeconomic model (MAVA) to demonstrate the precise nature of this problem. First, we employ the model to demonstrate that resource constraints do not substantially limit future economic growth under parametric conditions prevailing in the period 1960–2010. Second, we examine the sorts of changed conditions that are unavoidable in the coming century and demonstrate that declining population growth (and the increased dependency rates this implies) is likely to result in increasingly important resource constraints. Ironically, it is the decline in population growth rates—and not the opposite—that may occasion the return of Malthusian constraints.11Tim Swanson, holder of the André Hoffmann Chair of Environmental Economics at the Graduate Institute, wishes to acknowledge the generous support of André Hoffmann and the André Hoffmann Foundation for this work. This paper has benefited from the contributions of numerous research assistants and collaborators over the course of many years: Zacharias Ziegelhofer, Simon Neumuller, Arun Jacob, Derek Eaton, Ozgun Haznedar and Simon Dietz. We are grateful to the MAVA Foundation for providing funding for the work of all of these colleagues as well as that of the co-authors in the context of the “Human Niche project”. We also thank Jesus College for hosting the New Malthusianism workshop in which this paper was first presented, December 2018. We also wish to thank seminar audiences at the University of Cape Town, Beijing University, International Food Policy Resources Institute, Resources for the Future, and the Bill and Melinda Gates Foundation. Finally, we are grateful for comments from two referees and an editor of this journal.

Suggested Citation

  • Naso, Pedro & Lanz, Bruno & Swanson, Tim, 2020. "The return of Malthus? Resource constraints in an era of declining population growth," European Economic Review, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:eecrev:v:128:y:2020:i:c:s0014292120301306
    DOI: 10.1016/j.euroecorev.2020.103499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0014292120301306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.euroecorev.2020.103499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brander, James A & Taylor, M Scott, 1998. "The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use," American Economic Review, American Economic Association, vol. 88(1), pages 119-138, March.
    2. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    3. Peretto, Pietro F., 2015. "From Smith to Schumpeter: A theory of take-off and convergence to sustained growth," European Economic Review, Elsevier, vol. 78(C), pages 1-26.
    4. Bretschger, Lucas, 2020. "Malthus in the light of climate change," European Economic Review, Elsevier, vol. 127(C).
    5. Wilde, Joshua, 2012. "How substitutable are fixed factors in production? evidence from pre-industrial England," MPRA Paper 39278, University Library of Munich, Germany.
    6. Jevgenijs Steinbuks & Thomas Hertel, 2016. "Confronting the Food–Energy–Environment Trilemma: Global Land Use in the Long Run," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(3), pages 545-570, March.
    7. Alexandratos, Nikos & Bruinsma, Jelle, 2012. "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    8. Pietro Peretto & Simone Valente, 2015. "Growth on a finite planet: resources, technology and population in the long run," Journal of Economic Growth, Springer, vol. 20(3), pages 305-331, September.
    9. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(3), pages 973-1006, August.
    10. Gary D. Hansen & Edward C. Prescott, 2002. "Malthus to Solow," American Economic Review, American Economic Association, vol. 92(4), pages 1205-1217, September.
    11. Lucas Bretschger, 2013. "Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.
    12. M. Scott Taylor, 2009. "Innis Lecture: Environmental crises: past, present, and future," Canadian Journal of Economics, Canadian Economics Association, vol. 42(4), pages 1240-1275, November.
    13. Gregory Clark & Neil Cummins, 2009. "Urbanization, Mortality, and Fertility in Malthusian England," American Economic Review, American Economic Association, vol. 99(2), pages 242-247, May.
    14. Schneider, Uwe A. & Havlík, Petr & Schmid, Erwin & Valin, Hugo & Mosnier, Aline & Obersteiner, Michael & Böttcher, Hannes & Skalský, Rastislav & Balkovic, Juraj & Sauer, Timm & Fritz, Steffen, 2011. "Impacts of population growth, economic development, and technical change on global food production and consumption," Agricultural Systems, Elsevier, vol. 104(2), pages 204-215, February.
    15. Oded Galor, 2011. "Unified Growth Theory and Comparative Development," Rivista di Politica Economica, SIPI Spa, issue 2, pages 9-21, April-Jun.
    16. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    17. Sharp, Paul & Strulik, Holger & Weisdorf, Jacob, 2012. "The determinants of income in a Malthusian equilibrium," Journal of Development Economics, Elsevier, vol. 97(1), pages 112-117.
    18. Cai, Yongyang & Golub, Alla A. & Hertel, Thomas W., 2017. "Agricultural research spending must increase in light of future uncertainties," Food Policy, Elsevier, vol. 70(C), pages 71-83.
    19. Tamura, Robert, 2002. "Human capital and the switch from agriculture to industry," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 207-242, December.
    20. Oded Galor, 2011. "Unified Growth Theory," Economics Books, Princeton University Press, edition 1, number 9477.
    21. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    22. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    23. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    24. Holger Strulik & Jacob Weisdorf, 2008. "Population, food, and knowledge: a simple unified growth theory," Journal of Economic Growth, Springer, vol. 13(3), pages 195-216, September.
    25. M. Scott Taylor, 2009. "Innis Lecture: Environmental crises: past, present, and future," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 42(4), pages 1240-1275, November.
    26. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58, pages 973-1006, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli Chen & Yongyong Song & Xingang Fan & Jing Ma, 2022. "Sustainable Population Size at the County Level under Limited Development Policy Constraints: Case Study of the Xihaigu Mountain Area, Northwest China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    2. Pedro Naso; Ozgun Haznedar; Bruno Lanz; Timothy Swanson, 2021. "Food Security in the Long-Run:A Macroeconomic Approach to Land Use Policy," CIES Research Paper series 71-2021, Centre for International Environmental Studies, The Graduate Institute.
    3. Mino, Kazuo & Sasaki, Hiroaki, 2023. "Long-run consequences of population decline in an economy with exhaustible resources," Economic Modelling, Elsevier, vol. 121(C).
    4. Naso, Pedro & Haznedar, Ozgun & Lanz, Bruno & Swanson, Tim, 2022. "A macroeconomic approach to global land use policy," Resource and Energy Economics, Elsevier, vol. 69(C).
    5. Sasaki, Hiroaki & Mino, Kazuo, 2021. "Effects of Exhaustible Resources and Declining Population on Economic Growth with Hotelling's Rule," MPRA Paper 107787, University Library of Munich, Germany.
    6. Sheng Zhong & Mingting Shi & Qiang Xiao, 2022. "Spatiotemporal Evolution and Influencing Factors of Population Growth Transition in China during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    7. Kazuo Mino & Hiroaki Sasaki, 2021. "Long-Run Consequences of Population Decline in an Economy with Exhaustible Natural Resources," KIER Working Papers 1062, Kyoto University, Institute of Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naso, Pedro & Haznedar, Ozgun & Lanz, Bruno & Swanson, Tim, 2022. "A macroeconomic approach to global land use policy," Resource and Energy Economics, Elsevier, vol. 69(C).
    2. Pedro Naso; Ozgun Haznedar; Bruno Lanz; Timothy Swanson, 2021. "Food Security in the Long-Run:A Macroeconomic Approach to Land Use Policy," CIES Research Paper series 71-2021, Centre for International Environmental Studies, The Graduate Institute.
    3. Bruno Lanz & Simon Dietz & Timothy Swanson, 2016. "Economic growth and agricultural land conversion under uncertain productivity improvements in agriculture," CIES Research Paper series 43-2016, Centre for International Environmental Studies, The Graduate Institute.
    4. Bruno Lanz & Simon Dietz & Tim Swanson, 2018. "Global Economic Growth and Agricultural Land Conversion under Uncertain Productivity Improvements in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 545-569.
    5. Pietro Peretto & Simone Valente, 2015. "Growth on a finite planet: resources, technology and population in the long run," Journal of Economic Growth, Springer, vol. 20(3), pages 305-331, September.
    6. Lanz, Bruno & Dietz, Simon & Swanson, Tim, 2018. "The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment," Ecological Economics, Elsevier, vol. 144(C), pages 260-277.
    7. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(3), pages 973-1006, August.
    8. Lehmann-Hasemeyer, Sibylle & Prettner, Klaus & Tscheuschner, Paul, 2023. "The scientific revolution and its implications for long-run economic development," World Development, Elsevier, vol. 168(C).
    9. Prettner, Klaus & Werner, Katharina, 2016. "Why it pays off to pay us well: The impact of basic research on economic growth and welfare," Research Policy, Elsevier, vol. 45(5), pages 1075-1090.
    10. Jakob B. Madsen & Fabrice Murtin, 2017. "British economic growth since 1270: the role of education," Journal of Economic Growth, Springer, vol. 22(3), pages 229-272, September.
    11. Chu, Angus C. & Wang, Xilin, 2022. "Effects Of R&D Subsidies In A Hybrid Model Of Endogenous Growth And Semi-Endogenous Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 26(3), pages 813-832, April.
    12. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    13. Brunnschweiler, Christa N. & Peretto, Pietro F. & Valente, Simone, 2021. "Wealth creation, wealth dilution and demography," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 441-459.
    14. Attar, M. Aykut, 2015. "Entrepreneurship, knowledge, and the industrial revolution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-54.
    15. T. Ryan Johnson & Dietrich Vollrath, 2020. "The Role of Land in Temperate and Tropical Agriculture," Economica, London School of Economics and Political Science, vol. 87(348), pages 901-937, October.
    16. Chu, Angus & Cozzi, Guido & Fan, Haichao, 2022. "Natural Selection and Innovation-Driven Growth," MPRA Paper 113502, University Library of Munich, Germany.
    17. Peretto, Pietro F., 2021. "Through scarcity to prosperity: Toward a theory of sustainable growth," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 243-257.
    18. Strulik, Holger & Werner, Katharina, 2014. "Elite education, mass education, and the transition to modern growth," University of Göttingen Working Papers in Economics 205, University of Goettingen, Department of Economics.
    19. Chu, Angus C. & Peretto, Pietro F., 2023. "Innovation and inequality from stagnation to growth," European Economic Review, Elsevier, vol. 160(C).
    20. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.

    More about this item

    Keywords

    Resources; Population; Human capital; Technology;
    All these keywords.

    JEL classification:

    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eecrev:v:128:y:2020:i:c:s0014292120301306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eer .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.