Advanced Search
MyIDEAS: Login

The performance of estimators based on the propensity score

Contents:

Author Info

  • Huber, Martin
  • Lechner, Michael
  • Wunsch, Conny

Abstract

We investigate the finite sample properties of a large number of estimators for the average treatment effect on the treated that are suitable when adjustment for observed covariates is required, like inverse probability weighting, kernel and other variants of matching, as well as different parametric models. The simulation design used is based on real data usually employed for the evaluation of labour market programmes in Germany. We vary several dimensions of the design that are of practical importance, like sample size, the type of the outcome variable, and aspects of the selection process. We find that trimming individual observations with too much weight as well as the choice of tuning parameters are important for all estimators. A conclusion from our simulations is that a particular radius matching estimator combined with regression performs best overall, in particular when robustness to misspecifications of the propensity score and different types of outcome variables is considered an important property.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0304407613000390
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 175 (2013)
Issue (Month): 1 ()
Pages: 1-21

as in new window
Handle: RePEc:eee:econom:v:175:y:2013:i:1:p:1-21

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords: Propensity score matching; Kernel matching; Inverse probability weighting; Inverse probability tilting; Selection on observables; Empirical Monte Carlo study; Finite sample properties;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
  2. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
  3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
  4. Richard Blundell & Monica Costa Dias, 2008. "Alternative approaches to evaluation in empirical microeconomics," CeMMAP working papers CWP26/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  5. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2009. "Does Leaving Welfare Improve Health? Evidence for Germany," CEPR Discussion Papers 7421, C.E.P.R. Discussion Papers.
  6. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2008. "Inverse Probability Tilting for Moment Condition Models with Missing Data," NBER Working Papers 13981, National Bureau of Economic Research, Inc.
  7. Alberto Abadie & Guido W. Imbens, 2009. "Matching on the Estimated Propensity Score," NBER Working Papers 15301, National Bureau of Economic Research, Inc.
  8. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2004. "Evaluating the Employment Impact of a Mandatory Job Search Program," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 569-606, 06.
  9. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
  10. Michael Lechner & Conny Wunsch, 2006. "Are Training Programs More Effective When Unemployment Is High?," University of St. Gallen Department of Economics working paper series 2006 2006-23, Department of Economics, University of St. Gallen.
  11. Hujer, Reinhard & Caliendo, Marco & Thomsen, Stephan L., 2004. "New evidence on the effects of job creation schemes in Germany--a matching approach with threefold heterogeneity," Research in Economics, Elsevier, vol. 58(4), pages 257-302, December.
  12. Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
  13. Ben B. Hansen, 2004. "Full Matching in an Observational Study of Coaching for the SAT," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 609-618, January.
  14. Michael Lechner & Ruth Miquel & Conny Wunsch, 2004. "Long-run Effects of Public Sector Sponsored Training in West Germany," University of St. Gallen Department of Economics working paper series 2004 2004-19, Department of Economics, University of St. Gallen.
  15. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," Review of Economic Studies, Oxford University Press, vol. 72(1), pages 1-19.
  16. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, 01.
  17. Stefanie Behncke & Markus Frölich & Michael Lechner, 2010. "A Caseworker Like Me - Does The Similarity Between The Unemployed and Their Caseworkers Increase Job Placements?," Economic Journal, Royal Economic Society, vol. 120(549), pages 1430-1459, December.
  18. Nidardo, J. & Fortin, N. & Lemieux, T., 1994. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach," Papers 93-94-15, California Irvine - School of Social Sciences.
  19. Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric Tests of Conditional Treatment Effects," Cowles Foundation Discussion Papers 1740, Cowles Foundation for Research in Economics, Yale University.
  20. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76 Elsevier.
  21. Gerfin, Michael & Lechner, Michael, 2000. "Microeconometric Evaluation of the Active Labour Market Policy in Switzerland," IZA Discussion Papers 154, Institute for the Study of Labor (IZA).
  22. Zhao, Zhong, 2005. "Sensitivity of Propensity Score Methods to the Specifications," IZA Discussion Papers 1873, Institute for the Study of Labor (IZA).
  23. Caliendo, Marco & Hujer, Reinhard & Thomsen, Stephan L., 2005. "Identifying effect heterogeneity to improve the efficiency of job creation schemes in Germany," IAB Discussion Paper 200508, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  24. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-9, University of Miami, Department of Economics.
  25. Hujer, Reinhard & Thomsen, Stephan L., 2010. "How do the employment effects of job creation schemes differ with respect to the foregoing unemployment duration?," Labour Economics, Elsevier, vol. 17(1), pages 38-51, January.
  26. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
  27. Daniel Millimet & Rusty Tchernis, 2008. "On the Specification of Propensity Scores: with Applications to the Analysis of Trade Policies," Caepr Working Papers 2006-013_Updated, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
  28. Heckman, James J & Ichimura, Hidehiko & Todd, Petra, 1998. "Matching as an Econometric Evaluation Estimator," Review of Economic Studies, Wiley Blackwell, vol. 65(2), pages 261-94, April.
  29. Card, David & Kluve, Jochen & Weber, Andrea, 2009. "Active Labor Market Policy Evaluations: A Meta-Analysis," IZA Discussion Papers 4002, Institute for the Study of Labor (IZA).
  30. Augurzky, Boris & Kluve, Jochen, 2004. "Assessing the Performance of Matching Algorithms When Selection into Treatment Is Strong," IZA Discussion Papers 1301, Institute for the Study of Labor (IZA).
  31. Behncke, Stefanie & Frölich, Markus & Lechner, Michael, 2007. "Unemployed and Their Caseworkers: Should They Be Friends or Foes?," CEPR Discussion Papers 6558, C.E.P.R. Discussion Papers.
  32. Zhao, Zhong, 2006. "Matching Estimators and the Data from the National Supported Work Demonstration Again," IZA Discussion Papers 2375, Institute for the Study of Labor (IZA).
  33. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
  34. Lechner, Michael & Wunsch, Conny, 2007. "What Did All the Money Do? On the General Ineffectiveness of Recent West German Labour Market Programmes," CEPR Discussion Papers 6306, C.E.P.R. Discussion Papers.
  35. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
  36. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
  37. Hotz, V. Joseph & Crump, Richard K. & Mitnik, Oscar A. & Imbens, Guido, 2009. "Dealing with Limited Overlap in Estimation of Average Treatment Effects," Scholarly Articles 3007645, Harvard University Department of Economics.
  38. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-20, September.
  39. Zhong Zhao, 2004. "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 91-107, February.
  40. Patrick Kline, 2011. "Oaxaca-Blinder as a Reweighting Estimator," American Economic Review, American Economic Association, vol. 101(3), pages 532-37, May.
  41. Martin Huber, 2010. "Testing for covariate balance using quantile regression and resampling methods," University of St. Gallen Department of Economics working paper series 2010 2010-18, Department of Economics, University of St. Gallen.
  42. Marco Caliendo & Reinhard Hujer & Stephan L. Thomsen, 2006. "Sectoral Heterogeneity in the Employment Effects of Job Creation Schemes in Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 226(2), pages 139-179, March.
  43. Lechner, Michael, 1996. "An Evaluation of Public Sector Sponsored Continuous Vocational Training Programs in East Germany," Discussion Papers 539, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
  44. Lechner, Michael, 1999. "Earnings and Employment Effects of Continuous Off-the-Job Training in East Germany after Unification," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 74-90, January.
  45. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492 National Bureau of Economic Research, Inc.
  46. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
  47. Joshua D. Angrist, 1998. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants," Econometrica, Econometric Society, vol. 66(2), pages 249-288, March.
  48. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
  49. Hujer, Reinhard & Thomsen, Stephan Lothar & Zeiss, Christopher, 2004. "The Effects of Vocational Training Programmes on the Duration of Unemployment in Eastern Germany," IZA Discussion Papers 1117, Institute for the Study of Labor (IZA).
  50. Lechner, Michael, 2009. "Long-run labour market and health effects of individual sports activities," Journal of Health Economics, Elsevier, vol. 28(4), pages 839-854, July.
  51. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
  52. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-in-Differences Estimates?," The Quarterly Journal of Economics, MIT Press, vol. 119(1), pages 249-275, February.
  53. Busso, Matias & DiNardo, John & McCrary, Justin, 2009. "New Evidence on the Finite Sample Properties of Propensity Score Matching and Reweighting Estimators," IZA Discussion Papers 3998, Institute for the Study of Labor (IZA).
  54. Jose C. GALDO & Jeffrey SMITH & Dan BLACK, 2008. "Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data," Annales d'Economie et de Statistique, ENSAE, issue 91-92, pages 189-216.
  55. Markus Frölich, 2004. "Finite-Sample Properties of Propensity-Score Matching and Weighting Estimators," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 77-90, February.
  56. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
  57. Michael LECHNER, 2008. "A Note on the Common Support Problem in Applied Evaluation Studies," Annales d'Economie et de Statistique, ENSAE, issue 91-92, pages 217-235.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:175:y:2013:i:1:p:1-21. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.