IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v54y2002i3d10.1023_a1016034516731.html
   My bibliography  Save this item

Linking science to technology: Using bibliographic references in patents to build linkage schemes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
  2. Boyack, Kevin W. & Klavans, Richard, 2008. "Measuring science–technology interaction using rare inventor–author names," Journal of Informetrics, Elsevier, vol. 2(3), pages 173-182.
  3. Mu-Hsuan Huang & Ssu-Han Chen & Chia-Ying Lin & Dar-Zen Chen, 2014. "Exploring temporal relationships between scientific and technical fronts: a case of biotechnology field," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1085-1100, February.
  4. Bart Van Looy & Edwin Zimmermann & Reinhilde Veugelers & Arnold Verbeek & Johanna Mello & Koenraad Debackere, 2003. "Do science-technology interactions pay off when developing technology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 57(3), pages 355-367, July.
  5. Poh-Kam Wong & Yuen-Ping Ho, 2007. "Knowledge sources of innovation in a small open economy: The case of Singapore," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 223-249, February.
  6. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
  7. Mariia Shkolnykova, 2021. "Who shapes plant biotechnology in Germany? Joint analysis of the evolution of co-authors’ and co-inventors’ networks," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 27-54, April.
  8. Simplice Asongu & Jacinta C. Nwachukwu, 2016. "PhD by Publication as an Argument for Innovation and Technology Transfer: with Emphasis on Africa," Working Papers of the African Governance and Development Institute. 16/030, African Governance and Development Institute..
  9. Sung, Hui-Yun & Wang, Chun-Chieh & Huang, Mu-Hsuan & Chen, Dar-Zen, 2015. "Measuring science-based science linkage and non-science-based linkage of patents through non-patent references," Journal of Informetrics, Elsevier, vol. 9(3), pages 488-498.
  10. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  11. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
  12. Qingjun Zhao & Jiancheng Guan, 2013. "Love dynamics between science and technology: some evidences in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 113-132, January.
  13. Bart Looy & Tom Magerman & Koenraad Debackere, 2007. "Developing technology in the vicinity of science: An examination of the relationship between science intensity (of patents) and technological productivity within the field of biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 441-458, February.
  14. Shuo Xu & Ling Li & Xin An & Liyuan Hao & Guancan Yang, 2021. "An approach for detecting the commonality and specialty between scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7445-7475, September.
  15. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
  16. Yan Qi & Xin Zhang & Zhengyin Hu & Bin Xiang & Ran Zhang & Shu Fang, 2022. "Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5519-5550, September.
  17. Seokbeom Kwon & Kazuyuki Motohashi & Kenta Ikeuchi, 2022. "Chasing two hares at once? Effect of joint institutional change for promoting commercial use of university knowledge and scientific research," The Journal of Technology Transfer, Springer, vol. 47(4), pages 1242-1272, August.
  18. Kwon, Seokbeom & Drev, Matej, 2020. "Defensive Patent Aggregators as Shields against Patent Assertion Entities? Theoretical and Empirical Analysis," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  19. Xiaozan Lyu & Ping Zhou & Loet Leydesdorff, 2020. "Eco-system mapping of techno-science linkages at the level of scholarly journals and fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2037-2055, September.
  20. Leonardo Costa Ribeiro & Glenda Kruss & Gustavo Britto & Américo Tristão Bernardes & Eduardo Motta e Albuquerque, 2014. "A methodology for unveiling global innovation networks: patent citations as clues to cross border knowledge flows," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 61-83, October.
  21. Wang, Gangbo & Guan, Jiancheng, 2010. "The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology," Journal of Informetrics, Elsevier, vol. 4(3), pages 338-350.
  22. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
  23. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
  24. Chul Lee & Gunno Park & Klaus Marhold & Jina Kang, 2017. "Top management team’s innovation-related characteristics and the firm’s explorative R&D: an analysis based on patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 639-663, May.
  25. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
  26. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
  27. Si Hyung Joo & Yeonbae Kim, 2010. "Measuring relatedness between technological fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 435-454, May.
  28. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
  29. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
  30. Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.
  31. Yu-Wei Chang & Dar-Zen Chen & Mu-Hsuan Huang, 2021. "Do extraordinary science and technology scientists balance their publishing and patenting activities?," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-20, November.
  32. Schmid, Jon & Kwon, Seokbeom, 2020. "Collaboration in innovation: An empirical test of Varieties of Capitalism," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
  33. Hyun Woo Park & Jay Kang, 2009. "Patterns of scientific and technological knowledge flows based on scientific papers and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 811-820, December.
  34. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  35. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
  36. Naomi Fukuzawa & Takanori Ida, 2016. "Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: the case of Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 629-644, February.
  37. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
  38. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  39. Jiancheng Guan & Ying He, 2007. "Patent-bibliometric analysis on the Chinese science — technology linkages," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(3), pages 403-425, September.
  40. Hella Bani Baghdadi & Sami Aouadi, 2018. "Does Patent Performance Promote Relative Technological Performance in Countries Bordering the Mediterranean?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(4), pages 1246-1269, December.
  41. Debackere, Koenraad & Veugelers, Reinhilde, 2005. "The role of academic technology transfer organizations in improving industry science links," Research Policy, Elsevier, vol. 34(3), pages 321-342, April.
  42. Xia Gao & Jiancheng Guan, 2009. "Networks of scientific journals: An exploration of Chinese patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 283-302, July.
  43. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
  44. Hajime Eto, 2003. "Interdisciplinary information input and output of a nano-technology project," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(1), pages 5-33, September.
  45. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
  46. Amalia Mas-Bleda & Mike Thelwall, 2016. "Can alternative indicators overcome language biases in citation counts? A comparison of Spanish and UK research," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2007-2030, December.
  47. Zi-Lin He & Min Deng, 2007. "The evidence of systematic noise in non-patent references: A study of New Zealand companies’ patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(1), pages 149-166, July.
  48. Jyun-Cheng Wang & Cheng-hsin Chiang & Shu-Wei Lin, 2010. "Network structure of innovation: can brokerage or closure predict patent quality?," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 735-748, September.
  49. Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2020. "The science base of renewables," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
  50. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
  51. Kasia Zalewska-Kurek & Klaudia Egedova & Peter A. Th. M. Geurts & Hans E. Roosendaal, 2018. "Knowledge transfer activities of scientists in nanotechnology," The Journal of Technology Transfer, Springer, vol. 43(1), pages 139-158, February.
  52. Chul Lee & Gunno Park & Jina Kang, 2018. "The impact of convergence between science and technology on innovation," The Journal of Technology Transfer, Springer, vol. 43(2), pages 522-544, April.
  53. Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
  54. Xiaoling Sun & Kun Ding, 2018. "Identifying and tracking scientific and technological knowledge memes from citation networks of publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1735-1748, September.
  55. Naomi Fukuzawa & Takanori Ida, 2014. "Science linkages focused on star scientists in the life and medical sciences: The case of Japan," Discussion papers e-14-006, Graduate School of Economics Project Center, Kyoto University.
  56. Mogoutov, Andrei & Cambrosio, Alberto & Keating, Peter & Mustar, Philippe, 2008. "Biomedical innovation at the laboratory, clinical and commercial interface: A new method for mapping research projects, publications and patents in the field of microarrays," Journal of Informetrics, Elsevier, vol. 2(4), pages 341-353.
  57. Yi-Ching Liaw & Te-Yi Chan & Chin-Yuan Fan & Cheng-Hsin Chiang, 2014. "Can the technological impact of academic journals be evaluated? The practice of non-patent reference (NPR) analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 17-37, October.
  58. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
  59. Yoonhwan Oh & Jungsub Yoon & Jeong-Dong Lee, 2016. "Evolutionary Patterns of Renewable Energy Technology Development in East Asia (1990–2010)," Sustainability, MDPI, vol. 8(8), pages 1-24, July.
  60. Hsu, David W.L. & Shen, Yung-Chi & Yuan, Benjamin J.C. & Chou, Chiyan James, 2015. "Toward successful commercialization of university technology: Performance drivers of university technology transfer in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 25-39.
  61. Acosta, Manuel & Coronado, Daniel & Toribio, Mª Rosario, 2011. "The use of scientific knowledge by Spanish agrifood firms," Food Policy, Elsevier, vol. 36(4), pages 507-516, August.
  62. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.