IDEAS home Printed from https://ideas.repec.org/r/pra/mprapa/35738.html
   My bibliography  Save this item

A gravity model of mortality rates for two related populations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hong Li & Yang Lu & Pintao Lyu, 2021. "Coherent Mortality Forecasting for Less Developed Countries," Risks, MDPI, vol. 9(9), pages 1-21, August.
  2. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
  3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
  4. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
  5. French, Declan, 2014. "International mortality modelling—An economic perspective," Economics Letters, Elsevier, vol. 122(2), pages 182-186.
  6. FLICI, Farid, 2016. "The future of longevity and life annuities pricing in Algeria: comparison of mortality models," SocArXiv 2tdgm, Center for Open Science.
  7. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
  8. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
  9. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
  10. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2021. "Quantifying longevity gaps using micro‐level lifetime data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 548-570, April.
  11. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
  12. David Blake & Christophe Courbage & Richard MacMinn & Michael Sherris, 2011. "Longevity Risk and Capital Markets: The 2010–2011 Update," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 489-500, October.
  13. Hong Li & Yang Lu, 2018. "A Bayesian non-parametric model for small population mortality," Post-Print hal-02419000, HAL.
  14. Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
  15. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
  16. Jesús-Adrián Álvarez & Malene Kallestrup-Lamb & Søren Kjærgaard, 2020. "Linking retirement age to life expectancy does not lessen the demographic implications of unequal lifespans," CREATES Research Papers 2020-17, Department of Economics and Business Economics, Aarhus University.
  17. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
  18. Wong, Tat Wing & Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Time-consistent mean–variance hedging of longevity risk: Effect of cointegration," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 56-67.
  19. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
  20. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
  21. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2014. "Parametric mortality indexes: From index construction to hedging strategies," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 285-299.
  22. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
  23. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
  24. Alvarez, Jesús-Adrián & Kallestrup-Lamb, Malene & Kjærgaard, Søren, 2021. "Linking retirement age to life expectancy does not lessen the demographic implications of unequal lifespans," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 363-375.
  25. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
  26. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
  27. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
  28. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
  29. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
  30. Zhou, Rui & Ji, Min, 2021. "Modelling mortality dependence: An application of dynamic vine copula," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 241-255.
  31. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
  32. Yahia Salhi & Stéphane Loisel, 2012. "Basis risk modelling: a co-integration based approach," Working Papers hal-00746859, HAL.
  33. Qian Lu & Katja Hanewald & Xiaojun Wang, 2021. "Subnational Mortality Modelling: A Bayesian Hierarchical Model with Common Factors," Risks, MDPI, vol. 9(11), pages 1-21, November.
  34. Ahcan, Ales & Medved, Darko & Olivieri, Annamaria & Pitacco, Ermanno, 2014. "Forecasting mortality for small populations by mixing mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 12-27.
  35. Coughlan, Guy & Khalaf-Allah, Marwa & Ye, Yijing & Kumar, Sumit & Cairns, Andrew & Blake, David & Dowd, Kevin, 2011. "Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness," MPRA Paper 35743, University Library of Munich, Germany.
  36. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
  37. Tim J. Boonen & Hong Li, 2017. "Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach," Demography, Springer;Population Association of America (PAA), vol. 54(5), pages 1921-1946, October.
  38. Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
  39. Johnny Siu-Hang Li & Wai-Sum Chan & Rui Zhou, 2017. "Semicoherent Multipopulation Mortality Modeling: The Impact on Longevity Risk Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 1025-1065, September.
  40. Cadena, Meitner & Denuit, Michel, 2016. "Semi-parametric accelerated hazard relational models with applications to mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 1-16.
  41. Wang, Hsin-Chung & Yue, Ching-Syang Jack & Chong, Chen-Tai, 2018. "Mortality models and longevity risk for small populations," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 351-359.
  42. Tat Wing Wong & Mei Choi Chiu & Hoi Ying Wong, 2017. "Managing Mortality Risk With Longevity Bonds When Mortality Rates Are Cointegrated," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 987-1023, September.
  43. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
  44. Rui Zhou & Guangyu Xing & Min Ji, 2019. "Changes of Relation in Multi-Population Mortality Dependence: An Application of Threshold VECM," Risks, MDPI, vol. 7(1), pages 1-18, February.
  45. Yanxin Liu & Johnny Siu-Hang Li, 2023. "Disentangling Trend Risk and Basis Risk with Functional Time Series," Risks, MDPI, vol. 11(12), pages 1-18, November.
  46. Li, Johnny Siu-Hang & Liu, Yanxin, 2020. "The heat wave model for constructing two-dimensional mortality improvement scales with measures of uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 1-26.
  47. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
  48. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
  49. Yahia Salhi & Stéphane Loisel, 2017. "Basis risk modelling: a co-integration based approach," Post-Print hal-00746859, HAL.
  50. Cairns, Andrew J.G., 2011. "Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 438-453.
  51. Wan, Cheng & Bertschi, Ljudmila, 2015. "Swiss coherent mortality model as a basis for developing longevity de-risking solutions for Swiss pension funds: A practical approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 66-75.
  52. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
  53. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
  54. Flici, Farrid, 2016. "Projection des taux de mortalité par âges pour la population algérienne [Forecasting The Age Specific Mortality Rates For The Algerian Population]," MPRA Paper 98784, University Library of Munich, Germany, revised Dec 2016.
  55. Andrew J. G. Cairns, 2013. "Robust Hedging of Longevity Risk," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 621-648, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.