IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.09377.html
   My bibliography  Save this paper

Long-range dependent mortality modeling with cointegration

Author

Listed:
  • Mei Choi Chiu
  • Ling Wang
  • Hoi Ying Wong

Abstract

Empirical studies with publicly available life tables identify long-range dependence (LRD) in national mortality data. Although the longevity market is supposed to benchmark against the national force of mortality, insurers are more concerned about the forces of mortality associated with their own portfolios than the national ones. Recent advances on mortality modeling make use of fractional Brownian motion (fBm) to capture LRD. A theoretically flexible approach even considers mixed fBm (mfBm). Using Volterra processes, we prove that the direct use of mfBm encounters the identification problem so that insurers hardly detect the LRD effect from their portfolios. Cointegration techniques can effectively bring the LRD information within the national force of mortality to the mortality models for insurers' experienced portfolios. Under the open-loop equilibrium control framework, the explicit and unique equilibrium longevity hedging strategy is derived for cointegrated forces of mortality with LRD. Using the derived hedging strategy, our numerical examples show that the accuracy of estimating cointegration is crucial for hedging against the longevity exposure of insurers with LRD national force of mortality.

Suggested Citation

  • Mei Choi Chiu & Ling Wang & Hoi Ying Wong, 2025. "Long-range dependent mortality modeling with cointegration," Papers 2503.09377, arXiv.org.
  • Handle: RePEc:arx:papers:2503.09377
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.09377
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    2. Tat Wing Wong & Mei Choi Chiu & Hoi Ying Wong, 2017. "Managing Mortality Risk With Longevity Bonds When Mortality Rates Are Cointegrated," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 987-1023, September.
    3. David Blake & Andrew Cairns & Kevin Dowd & Richard MacMinn, 2006. "Longevity Bonds: Financial Engineering, Valuation, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 647-672, December.
    4. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    5. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    6. Biffis, Enrico & Blake, David, 2010. "Securitizing and tranching longevity exposures," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 186-197, February.
    7. Njenga Carolyn N & Sherris Michael, 2011. "Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 5(2), pages 1-54, July.
    8. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & Marwa Khalaf-Allah, 2011. "A Gravity Model of Mortality Rates for Two Related Populations," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 334-356.
    9. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    10. Paul Dawson & Kevin Dowd & Andrew J. G. Cairns & David Blake, 2010. "Survivor Derivatives: A Consistent Pricing Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 579-596, September.
    11. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    12. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    13. Mylonidis, Nikolaos & Kollias, Christos, 2010. "Dynamic European stock market convergence: Evidence from rolling cointegration analysis in the first euro-decade," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2056-2064, September.
    14. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Time-varying long-range dependence in US interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 360-367.
    15. Wang, Ling & Wong, Hoi Ying, 2021. "Time-consistent longevity hedging with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 25-41.
    16. Francesca Biagini & Camila Botero & Irene Schreiber, 2017. "Risk-Minimization For Life Insurance Liabilities With Dependent Mortality Risk," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 505-533, April.
    17. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    18. OlaOluwa S. Yaya & Luis A. Gil-Alana & Acheampong Y. Amoateng, 2019. "Under-5 Mortality Rates in G7 Countries: Analysis of Fractional Persistence, Structural Breaks and Nonlinear Time Trends," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 675-694, October.
    19. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    20. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    21. Coughlan, Guy & Khalaf-Allah, Marwa & Ye, Yijing & Kumar, Sumit & Cairns, Andrew & Blake, David & Dowd, Kevin, 2011. "Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness," MPRA Paper 35743, University Library of Munich, Germany.
    22. Yan, Hongxuan & Peters, Gareth W. & Chan, Jennifer, 2021. "Mortality models incorporating long memory for life table estimation: a comprehensive analysis," Annals of Actuarial Science, Cambridge University Press, vol. 15(3), pages 567-604, November.
    23. Rui Zhou & Yujiao Wang & Kai Kaufhold & Johnny Li & Ken Tan, 2014. "Modeling Period Effects in Multi-Population Mortality Models: Applications to Solvency II," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 150-167.
    24. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2017. "Time-Inconsistent Stochastic Linear--Quadratic Control: Characterization and Uniqueness of Equilibrium," Post-Print hal-01139343, HAL.
    25. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    26. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    27. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Wang, Ling & Wong, Hoi Ying, 2021. "Time-consistent longevity hedging with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 25-41.
    4. Wong, Tat Wing & Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Time-consistent mean–variance hedging of longevity risk: Effect of cointegration," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 56-67.
    5. Tat Wing Wong & Mei Choi Chiu & Hoi Ying Wong, 2017. "Managing Mortality Risk With Longevity Bonds When Mortality Rates Are Cointegrated," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 987-1023, September.
    6. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2021. "Time-consistent mean-variance reinsurance-investment problem with long-range dependent mortality rate," Papers 2112.06602, arXiv.org.
    7. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    8. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
    9. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    10. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    11. David Blake & Christophe Courbage & Richard MacMinn & Michael Sherris, 2011. "Longevity Risk and Capital Markets: The 2010–2011 Update," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 489-500, October.
    12. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    13. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    14. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.
    15. Qian Lei & Chi Seng Pun, 2024. "A Malliavin Calculus Approach to Backward Stochastic Volterra Integral Equations," Papers 2412.19236, arXiv.org, revised Jan 2025.
    16. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    17. Rui Zhou & Guangyu Xing & Min Ji, 2019. "Changes of Relation in Multi-Population Mortality Dependence: An Application of Threshold VECM," Risks, MDPI, vol. 7(1), pages 1-18, February.
    18. Yan, Tingjin & Wong, Hoi Ying, 2020. "Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 105-119.
    19. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    20. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.09377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.