IDEAS home Printed from https://ideas.repec.org/r/nat/natcli/v7y2017i1d10.1038_nclimate3148.html
   My bibliography  Save this item

Industrial ecology in integrated assessment models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jia, Zhijie & Lin, Boqiang, 2021. "The impact of removing cross subsidies in electric power industry in China: Welfare, economy, and CO2 emission," Energy Policy, Elsevier, vol. 148(PB).
  2. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
  3. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
  4. Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
  5. Jia, Zhijie & Lin, Boqiang & Liu, Xiying, 2023. "Rethinking the equity and efficiency of carbon tax: A novel perspective," Applied Energy, Elsevier, vol. 346(C).
  6. Dirk Lauinger & Romain G. Billy & Felipe Vásquez & Daniel B. Müller, 2021. "A general framework for stock dynamics of populations and built and natural environments," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1136-1146, October.
  7. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
  8. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
  9. Haas, Jannik & Moreno-Leiva, Simón & Junne, Tobias & Chen, Po-Jung & Pamparana, Giovanni & Nowak, Wolfgang & Kracht, Willy & Ortiz, Julián M., 2020. "Copper mining: 100% solar electricity by 2030?," Applied Energy, Elsevier, vol. 262(C).
  10. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
  11. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & Mima, Silvana & van Vuuren, Detlef P. & Worrell, Ernst, 2019. "The scope for better industry representation in long-term energy models: Modeling the cement industry," Applied Energy, Elsevier, vol. 240(C), pages 964-985.
  12. Joris Šimaitis & Stephen Allen & Christopher Vagg, 2023. "Are future recycling benefits misleading? Prospective life cycle assessment of lithium‐ion batteries," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1291-1303, October.
  13. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
  14. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
  15. Johannsen, Rasmus Magni & Mathiesen, Brian Vad & Kermeli, Katerina & Crijns-Graus, Wina & Østergaard, Poul Alberg, 2023. "Exploring pathways to 100% renewable energy in European industry," Energy, Elsevier, vol. 268(C).
  16. Christopher Kennedy, 2020. "The energy embodied in the first and second industrial revolutions," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 887-898, August.
  17. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
  18. Vivien Fisch-Romito, 2021. "Embodied carbon dioxide emissions to provide high access levels to basic infrastructure around the world," Post-Print hal-03353919, HAL.
  19. Lessard, Jean-Martin & Habert, Guillaume & Tagnit-Hamou, Arezki & Amor, Ben, 2021. "A time-series material-product chain model extended to a multiregional industrial symbiosis: The case of material circularity in the cement sector," Ecological Economics, Elsevier, vol. 179(C).
  20. Hertwich, Edgar, 2019. "The Carbon Footprint of Material Production Rises to 23% of Global Greenhouse Gas Emissions," SocArXiv n9ecw, Center for Open Science.
  21. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  22. Genovese, P.V. & Zoure, A.N., 2023. "Architecture trends and challenges in sub-Saharan Africa's construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  23. Philipp A. Trotter & Tristan Becker & Renaldi Renaldi & Xinfang Wang & Radhika Khosla & Grit Walther, 2023. "The role of supply chains for the sustainability transformation of global food systems: A large‐scale, systematic review of food cold chains," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1429-1446, December.
  24. Conteratto, Caroline & Artuzo, Felipe Dalzotto & Benedetti Santos, Omar Inácio & Talamini, Edson, 2021. "Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  25. Christine Roxanne Hung & Paul Kishimoto & Volker Krey & Anders Hammer Strømman & Guillaume Majeau‐Bettez, 2022. "ECOPT2: An adaptable life cycle assessment model for the environmentally constrained optimization of prospective technology transitions," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1616-1630, October.
  26. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
  27. Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
  28. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
  29. Kullmann, Felix & Markewitz, Peter & Kotzur, Leander & Stolten, Detlef, 2022. "The value of recycling for low-carbon energy systems - A case study of Germany's energy transition," Energy, Elsevier, vol. 256(C).
  30. Julien Pedneault & Guillaume Majeau‐Bettez & Stefan Pauliuk & Manuele Margni, 2022. "Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1728-1746, October.
  31. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
  32. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
  33. Haris Doukas & Alexandros Nikas & Mikel González-Eguino & Iñaki Arto & Annela Anger-Kraavi, 2018. "From Integrated to Integrative: Delivering on the Paris Agreement," Sustainability, MDPI, vol. 10(7), pages 1-10, July.
  34. Yu, Xiang & Zhang, Yongsheng, 2021. "An economic mechanism of industrial ecology: Theory and evidence," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 14-22.
  35. Jia, Zhijie & Lin, Boqiang, 2022. "Is the rebound effect useless? A case study on the technological progress of the power industry," Energy, Elsevier, vol. 248(C).
  36. Hossain, Md. Uzzal & Ng, S. Thomas & Antwi-Afari, Prince & Amor, Ben, 2020. "Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  37. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
  38. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
  39. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
  40. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
  41. Antoine Boubault & Nadia Maïzi, 2019. "Devising Mineral Resource Supply Pathways to a Low-Carbon Electricity Generation by 2100," Resources, MDPI, vol. 8(1), pages 1-13, February.
  42. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
  43. Mandana Mazaheri & Yvonne Scorgie & Richard A. Broome & Geoffrey G. Morgan & Bin Jalaludin & Matthew L. Riley, 2021. "Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information," Energies, MDPI, vol. 14(22), pages 1-14, November.
  44. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.
  45. Antoine TEIXEIRA & Julien LEFEVRE, 2023. "Low carbon strategies need to tackle the carbon footprint of materials production," Working Paper e943a76f-0586-4eab-a747-8, Agence française de développement.
  46. Tobias Junne & Karl-Kiên Cao & Kim Kira Miskiw & Heidi Hottenroth & Tobias Naegler, 2021. "Considering Life Cycle Greenhouse Gas Emissions in Power System Expansion Planning for Europe and North Africa Using Multi-Objective Optimization," Energies, MDPI, vol. 14(5), pages 1-26, February.
  47. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.
  48. Palombelli, Andrea & Gardumi, Francesco & Rocco, MatteoVincenzo & Howells, Mark & Colombo, Emanuela, 2020. "Development of functionalities for improved storage modelling in OSeMOSYS," Energy, Elsevier, vol. 195(C).
  49. Stefan Pauliuk & Niko Heeren, 2021. "Material efficiency and its contribution to climate change mitigation in Germany: A deep decarbonization scenario analysis until 2060," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 479-493, April.
  50. Yaqi Hu & Yingzi Chen, 2022. "Coupling of Urban Economic Development and Transportation System: An Urban Agglomeration Case," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
  51. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
  52. Kaixin Huang & Matthew J. Eckelman, 2022. "Appending material flows to the National Energy Modeling System (NEMS) for projecting the physical economy of the United States," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 294-308, February.
  53. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
  54. Glenn A. Aguilar‐Hernandez & Sebastiaan Deetman & Stefano Merciai & João F. D. Rodrigues & Arnold Tukker, 2021. "Global distribution of material inflows to in‐use stocks in 2011 and its implications for a circularity transition," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1447-1461, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.