Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- is not listed on IDEAS
- Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
- Katherine Tierney, 2022. "The Future of Assisted Reproductive Technology Live Births in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(5), pages 2289-2309, October.
- Wang, Xiaoqian & Hyndman, Rob J. & Wickramasuriya, Shanika L., 2025.
"Optimal forecast reconciliation with time series selection,"
European Journal of Operational Research, Elsevier, vol. 323(2), pages 455-470.
- Xiaoqian Wang & Rob J Hyndman & Shanika Wickramasuriya, 2024. "Optimal Forecast Reconciliation with Time Series Selection," Monash Econometrics and Business Statistics Working Papers 5/24, Monash University, Department of Econometrics and Business Statistics.
- Rombouts, Jeroen & Ternes, Marie & Wilms, Ines, 2025. "Cross-temporal forecast reconciliation at digital platforms with machine learning," International Journal of Forecasting, Elsevier, vol. 41(1), pages 321-344.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Cengiz, Doruk & Tekgüç, Hasan, 2024. "Counterfactual reconciliation: Incorporating aggregation constraints for more accurate causal effect estimates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 564-580.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
- Sakai Ando & Futoshi Narita, 2024. "An Alternative Proof of Minimum Trace Reconciliation," Forecasting, MDPI, vol. 6(2), pages 1-6, June.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Mahsa Ashouri & Rob J Hyndman & Galit Shmueli, 2019. "Fast Forecast Reconciliation Using Linear Models," Monash Econometrics and Business Statistics Working Papers 29/19, Monash University, Department of Econometrics and Business Statistics.
- Sbrana, Giacomo & Pelagatti, Matteo, 2024. "Optimal hierarchical EWMA forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 616-625.
- Ghelasi, Paul & Ziel, Florian, 2024. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 581-596.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Héctor M. Zárate-Solano & Norberto Rodríguez-Niño, 2024. "Consumer Prices Trends in Colombia: Detecting Breaks and Forecasting Infation," Borradores de Economia 1289, Banco de la Republica de Colombia.
- Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
- Sarah Friedrich & Gerd Antes & Sigrid Behr & Harald Binder & Werner Brannath & Florian Dumpert & Katja Ickstadt & Hans A. Kestler & Johannes Lederer & Heinz Leitgöb & Markus Pauly & Ansgar Steland & A, 2022. "Is there a role for statistics in artificial intelligence?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 823-846, December.
- Zhang, Bohan & Panagiotelis, Anastasios & Li, Han, 2025. "Constructing hierarchical time series through clustering: Is there an optimal way for forecasting?," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1022-1036.
- Robinson Kruse‐Becher, 2025. "Adaptive Now‐ and Forecasting of Global Temperatures Under Smooth Structural Changes," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021.
"Forecast reconciliation: A geometric view with new insights on bias correction,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 23/20, Monash University, Department of Econometrics and Business Statistics.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Mustapha Sali & Yahya Ghrab & Clément Chatras, 2023. "Optimal product aggregation for sales and operations planning in mass customisation context," Post-Print hal-04319422, HAL.
- Anderer, Matthias & Li, Feng, 2022. "Hierarchical forecasting with a top-down alignment of independent-level forecasts," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1405-1414.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
- Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
- Brégère, Margaux & Huard, Malo, 2022. "Online hierarchical forecasting for power consumption data," International Journal of Forecasting, Elsevier, vol. 38(1), pages 339-351.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023.
"Probabilistic forecast reconciliation: Properties, evaluation and score optimisation,"
European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020. "Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation," Monash Econometrics and Business Statistics Working Papers 26/20, Monash University, Department of Econometrics and Business Statistics.
- Cengiz, Doruk & Tekgüç, Hasan, 2022. "Counterfactual Reconciliation: Incorporating Aggregation Constraints For More Accurate Causal Effect Estimates," MPRA Paper 114478, University Library of Munich, Germany.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Zambon, Lorenzo & Agosto, Arianna & Giudici, Paolo & Corani, Giorgio, 2024. "Properties of the reconciled distributions for Gaussian and count forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1438-1448.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
- George Athanasopoulos & Nikolaos Kourentzes, 2021. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 10/21, Monash University, Department of Econometrics and Business Statistics.
- Pietro Giorgio Lovaglio, 2025. "Cross‐Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 753-780, March.
- Sprangers, Olivier & Wadman, Wander & Schelter, Sebastian & de Rijke, Maarten, 2024. "Hierarchical forecasting at scale," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1689-1700.
- Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
- Daniele Girolimetto & Tommaso Di Fonzo, 2024. "Point and probabilistic forecast reconciliation for general linearly constrained multiple time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 581-607, April.
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Vladislav Bína, Jitka Bartosová, Vladimir Pribyl, 2022. "Anomaly Detection in Time Series for Smart Agriculture," International Journal of Management, Knowledge and Learning, ToKnowPress, vol. 11, pages 177-186.
- Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Raffaele Mattera & George Athanasopoulos & Rob Hyndman, 2024.
"Improving out-of-sample forecasts of stock price indexes with forecast reconciliation and clustering,"
Quantitative Finance, Taylor & Francis Journals, vol. 24(11), pages 1641-1667, November.
- George Athanasopoulos & Rob J Hyndman & Raffaele Mattera, 2023. "Improving out-of-sample Forecasts of Stock Price Indexes with Forecast Reconciliation and Clustering," Monash Econometrics and Business Statistics Working Papers 17/23, Monash University, Department of Econometrics and Business Statistics.
- Sagaert, Yves R. & Kourentzes, Nikolaos, 2025. "Inventory management with leading indicator augmented hierarchical forecasts," Omega, Elsevier, vol. 136(C).
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Sonaxy Mohanty & Airi Shimamura & Charles D. Nicholson & Andrés D. González & Talayeh Razzaghi, 2025. "Hierarchical Time Series Forecasting of COVID-19 Cases Using County-Level Clustering Data," SN Operations Research Forum, Springer, vol. 6(1), pages 1-28, March.
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
- Sakai Ando & Taehoon Kim, 2024. "Systematizing Macroframework Forecasting: High-Dimensional Conditional Forecasting with Accounting Identities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(4), pages 1386-1410, December.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Shafie Bahman & Hamidreza Zareipour, 2025. "Long-Term Multi-Resolution Probabilistic Load Forecasting Using Temporal Hierarchies," Energies, MDPI, vol. 18(11), pages 1-30, June.
- George Athanasopoulos & Rob J Hyndman & Mitchell O'Hara-Wild, 2021. "The Road to Recovery from COVID-19 for Australian Tourism," Monash Econometrics and Business Statistics Working Papers 1/21, Monash University, Department of Econometrics and Business Statistics.
- Sali, Mustapha & Ghrab, Yahya & Chatras, Clément, 2023. "Optimal product aggregation for sales and operations planning in mass customisation context," International Journal of Production Economics, Elsevier, vol. 263(C).
- Abolghasemi, Mahdi & Girolimetto, Daniele & Di Fonzo, Tommaso, 2025. "Improving cross-temporal forecasts reconciliation accuracy and utility in energy market," Applied Energy, Elsevier, vol. 394(C).
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
- Zeda Li & William W. S. Wei, 2024. "Measuring the advantages of contemporaneous aggregation in forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1308-1320, August.
- Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
- Aljuneidi, Tariq & Punia, Sushil & Jebali, Aida & Nikolopoulos, Konstantinos, 2024. "Forecasting and planning for a critical infrastructure sector during a pandemic: Empirical evidence from a food supply chain," European Journal of Operational Research, Elsevier, vol. 317(3), pages 936-952.
- Kafa, Nadine & Babai, M. Zied & Klibi, Walid, 2025. "Forecasting mail flow: A hierarchical approach for enhanced societal wellbeing," International Journal of Forecasting, Elsevier, vol. 41(1), pages 51-65.
- Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Paul Ghelasi & Florian Ziel, 2023. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," Papers 2305.16255, arXiv.org.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Rania A. H. Mohamed, 2023. "Enhancing forecast accuracy using combination methods for the hierarchical time series approach," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-18, July.
Printed from https://ideas.repec.org/r/msh/ebswps/2017-22.html