IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v57y2009i3p637-649.html
   My bibliography  Save this item

Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. David B. Brown & James E. Smith, 2014. "Information Relaxations, Duality, and Convex Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 62(6), pages 1394-1415, December.
  2. Ş. İlker Birbil & J. B. G. Frenk & Joaquim A. S. Gromicho & Shuzhong Zhang, 2014. "A Network Airline Revenue Management Framework Based on Decomposition by Origins and Destinations," Transportation Science, INFORMS, vol. 48(3), pages 313-333, August.
  3. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
  4. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
  5. Pavithra Harsha & Shivaram Subramanian & Joline Uichanco, 2019. "Dynamic Pricing of Omnichannel Inventories," Service Science, INFORMS, vol. 21(1), pages 47-65, January.
  6. Dan Zhang & Zhaosong Lu, 2013. "Assessing the Value of Dynamic Pricing in Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 102-115, February.
  7. Sumit Kunnumkal & Kalyan Talluri, 2011. "Equivalence of Piecewise-Linear Approximation and Lagrangian Relaxation for Network Revenue Management," Working Papers 608, Barcelona School of Economics.
  8. Santiago R. Balseiro & David B. Brown & Chen Chen, 2021. "Dynamic Pricing of Relocating Resources in Large Networks," Management Science, INFORMS, vol. 67(7), pages 4075-4094, July.
  9. David Sayah, 2015. "Approximate Linear Programming in Network Revenue Management with Multiple Modes," Working Papers 1518, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  10. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
  11. Dong Li & Zhan Pang & Lixian Qian, 2023. "Bid price controls for car rental network revenue management," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 261-282, January.
  12. Xingxing Chen & Jacob Feldman & Seung Hwan Jung & Panos Kouvelis, 2022. "Approximation schemes for the joint inventory selection and online resource allocation problem," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3143-3159, August.
  13. Huang, Kuancheng & Lin, Chia-Yi, 2014. "A simulation analysis for the re-solving issue of the network revenue management problem," Journal of Air Transport Management, Elsevier, vol. 38(C), pages 36-42.
  14. Yuri Levin & Mikhail Nediak & Huseyin Topaloglu, 2012. "Cargo Capacity Management with Allotments and Spot Market Demand," Operations Research, INFORMS, vol. 60(2), pages 351-365, April.
  15. Alexander Erdelyi & Huseyin Topaloglu, 2010. "A Dynamic Programming Decomposition Method for Making Overbooking Decisions Over an Airline Network," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 443-456, August.
  16. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
  17. Sumit Kunnumkal & Kalyan Talluri, 2011. "Equivalence of piecewise-linear approximation and Lagrangian relaxation for network revenue management," Economics Working Papers 1305, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2012.
  18. Sumit Kunnumkal & Kalyan Talluri, 2016. "On a Piecewise-Linear Approximation for Network Revenue Management," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 72-91, February.
  19. Wang, Xinchang & Wang, Hua & Zhang, Xiaoning, 2016. "Stochastic seat allocation models for passenger rail transportation under customer choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 95-112.
  20. Hossein Jahandideh & Julie Ward Drew & Filippo Balestrieri & Kevin McCardle, 2020. "Individualized Pricing for a Cloud Provider Hosting Interactive Applications," Service Science, INFORMS, vol. 12(4), pages 130-147, December.
  21. Guillermo Gallego & Gerardo Berbeglia, 2021. "Bounds, Heuristics, and Prophet Inequalities for Assortment Optimization," Papers 2109.14861, arXiv.org, revised Oct 2023.
  22. David B. Brown & James E. Smith, 2020. "Index Policies and Performance Bounds for Dynamic Selection Problems," Management Science, INFORMS, vol. 66(7), pages 3029-3050, July.
  23. Aslani, Shirin & Modarres, Mohammad & Sibdari, Soheil, 2014. "On the fairness of airlines’ ticket pricing as a result of revenue management techniques," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 56-64.
  24. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
  25. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
  26. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
  27. Hetrakul, Pratt & Cirillo, Cinzia, 2014. "A latent class choice based model system for railway optimal pricing and seat allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 68-83.
  28. Fangzhou Yan & Huaxin Qiu & Dongya Han, 2023. "Lagrangian Heuristic for Multi-Depot Technician Planning of Product Distribution and Installation with a Lunch Break," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
  29. Markus Ettl & Pavithra Harsha & Anna Papush & Georgia Perakis, 2020. "A Data-Driven Approach to Personalized Bundle Pricing and Recommendation," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 461-480, May.
  30. Meissner, Joern & Strauss, Arne, 2012. "Improved bid prices for choice-based network revenue management," European Journal of Operational Research, Elsevier, vol. 217(2), pages 417-427.
  31. Aydin, N. & Birbil, S.I., 2018. "Decomposition methods for dynamic room allocation in hotel revenue management," European Journal of Operational Research, Elsevier, vol. 271(1), pages 179-192.
  32. Benoît Rottembourg & Jacques Masson, 2017. "When bid price is not enough: Taking better allotment decisions for Camping Revenue Management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(2), pages 115-124, April.
  33. Juan M. Chaneton & Gustavo Vulcano, 2011. "Computing Bid Prices for Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 452-470, October.
  34. Sumit Kunnumkal & Huseyin Topaloglu, 2010. "Computing Time-Dependent Bid Prices in Network Revenue Management Problems," Transportation Science, INFORMS, vol. 44(1), pages 38-62, February.
  35. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
  36. Archis Ghate & Robert L. Smith, 2013. "A Linear Programming Approach to Nonstationary Infinite-Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 61(2), pages 413-425, April.
  37. Sumit Kunnumkal & Kalyan Talluri, 2019. "A strong Lagrangian relaxation for general discrete-choice network revenue management," Computational Optimization and Applications, Springer, vol. 73(1), pages 275-310, May.
  38. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
  39. Deligiannis, Michalis & Liberopoulos, George, 2023. "Dynamic ordering and buyer selection policies when service affects future demand," Omega, Elsevier, vol. 118(C).
  40. Hosseinalifam, M. & Marcotte, P. & Savard, G., 2016. "A new bid price approach to dynamic resource allocation in network revenue management," European Journal of Operational Research, Elsevier, vol. 255(1), pages 142-150.
  41. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
  42. Zhang, Juliang & Xiang, Jie & Cheng, T.C. Edwin & Hua, Guowei & Chen, Cheng, 2019. "An optimal efficient multi-attribute auction for transportation procurement with carriers having multi-unit supplies," Omega, Elsevier, vol. 83(C), pages 249-260.
  43. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
  44. Mustafa Akan & Barış Ata, 2009. "Bid-Price Controls for Network Revenue Management: Martingale Characterization of Optimal Bid Prices," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 912-936, November.
  45. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
  46. Kalyan Talluri, 2014. "New Formulations for Choice Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 401-413, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.