IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/1518.html
   My bibliography  Save this paper

Approximate Linear Programming in Network Revenue Management with Multiple Modes

Author

Listed:
  • David Sayah

    (Johannes Gutenberg University Mainz)

Abstract

Approximate linear programming has been applied to network revenue management problems under the fundamental modeling assumption that products de?ne combinations of one resource bundle and a fare class. We consider products that can have multiple operational modes allowing companies to select the way they want to serve the purchaser of a multi-mode product. We show that the presence of multi-mode products implies a weaker relation between an a?ne approximate linear program (ALP) and a compact reformulation, known as reduction. Consequently, the upper bound on the maximum expected revenue obtained via the reduction is not necessarily as tight as the upper bound produced via the ALP. We further demonstrate that the gap between these two formulations is bounded in general and zero in a particular class of instances, when multi-mode products are ?exible products. For general instances, we exploit a set-packing structure within the reduction in order to improve the upper bound, i.e., we introduce a cutting plane method that strengthens the reduction by separating valid inequalities. Our computational tests indicate that it is possible to halve the gap in not more than 4% of the time needed to solve the ALP via column generation.

Suggested Citation

  • David Sayah, 2015. "Approximate Linear Programming in Network Revenue Management with Multiple Modes," Working Papers 1518, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:1518
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_1518.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sumit Kunnumkal & Kalyan Talluri, 2014. "On the Tractability of the Piecewiselinear Approximation for General Discrete-Choice Network Revenue Management," Working Papers 749, Barcelona School of Economics.
    2. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    3. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    4. Dan Zhang & Daniel Adelman, 2009. "An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice," Transportation Science, INFORMS, vol. 43(3), pages 381-394, August.
    5. Hatem Ben Amor & Jacques Desrosiers & José Manuel Valério de Carvalho, 2006. "Dual-Optimal Inequalities for Stabilized Column Generation," Operations Research, INFORMS, vol. 54(3), pages 454-463, June.
    6. Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.
    7. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    8. Sumit Kunnumkal & Huseyin Topaloglu, 2010. "Computing Time-Dependent Bid Prices in Network Revenue Management Problems," Transportation Science, INFORMS, vol. 44(1), pages 38-62, February.
    9. Huseyin Topaloglu, 2009. "Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 637-649, June.
    10. Guillermo Gallego & Robert Phillips, 2004. "Revenue Management of Flexible Products," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 321-337, January.
    11. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
    12. Daniel Adelman, 2007. "Dynamic Bid Prices in Revenue Management," Operations Research, INFORMS, vol. 55(4), pages 647-661, August.
    13. Sumit Kunnumkal & Kalyan Talluri, 2014. "On the tractability of the piecewise-linear approximation for general discrete-choice network revenue management," Economics Working Papers 1409, Department of Economics and Business, Universitat Pompeu Fabra.
    14. Chen, Shaoxiang & Gallego, Guillermo & Li, Michael Z.F. & Lin, Bing, 2010. "Optimal seat allocation for two-flight problems with a flexible demand segment," European Journal of Operational Research, Elsevier, vol. 201(3), pages 897-908, March.
    15. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
    2. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    2. Sebastian Koch & Jochen Gönsch & Claudius Steinhardt, 2017. "Dynamic Programming Decomposition for Choice-Based Revenue Management with Flexible Products," Transportation Science, INFORMS, vol. 51(4), pages 1046-1062, November.
    3. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    4. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
    5. Meissner, Joern & Strauss, Arne, 2012. "Improved bid prices for choice-based network revenue management," European Journal of Operational Research, Elsevier, vol. 217(2), pages 417-427.
    6. Sumit Kunnumkal & Kalyan Talluri, 2016. "On a Piecewise-Linear Approximation for Network Revenue Management," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 72-91, February.
    7. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    8. Dan Zhang, 2011. "An Improved Dynamic Programming Decomposition Approach for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 35-52, April.
    9. Sumit Kunnumkal & Kalyan Talluri, 2011. "Equivalence of piecewise-linear approximation and Lagrangian relaxation for network revenue management," Economics Working Papers 1305, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2012.
    10. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    11. Juan M. Chaneton & Gustavo Vulcano, 2011. "Computing Bid Prices for Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 452-470, October.
    12. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
    13. Sumit Kunnumkal & Kalyan Talluri, 2011. "Equivalence of Piecewise-Linear Approximation and Lagrangian Relaxation for Network Revenue Management," Working Papers 608, Barcelona School of Economics.
    14. Dong Li & Zhan Pang & Lixian Qian, 2023. "Bid price controls for car rental network revenue management," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 261-282, January.
    15. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    16. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    17. Huang, Kuancheng & Lin, Chia-Yi, 2014. "A simulation analysis for the re-solving issue of the network revenue management problem," Journal of Air Transport Management, Elsevier, vol. 38(C), pages 36-42.
    18. Alfredo Torrico & Alejandro Toriello, 2022. "Dynamic Relaxations for Online Bipartite Matching," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1871-1884, July.
    19. Gönsch, Jochen & Koch, Sebastian & Steinhardt, Claudius, 2014. "Revenue management with flexible products: The value of flexibility and its incorporation into DLP-based approaches," International Journal of Production Economics, Elsevier, vol. 153(C), pages 280-294.
    20. Hossein Jahandideh & Julie Ward Drew & Filippo Balestrieri & Kevin McCardle, 2020. "Individualized Pricing for a Cloud Provider Hosting Interactive Applications," Service Science, INFORMS, vol. 12(4), pages 130-147, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:1518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.