IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Network Revenue Management with Inventory-Sensitive Bid Prices and Customer Choice

Listed author(s):
  • Joern Meissner

    (Department of Management Science, Lancaster University Management School)

  • Arne Strauss

    (Department of Management Science, Lancaster University Management School)

We develop a new approximate dynamic programming approach to network revenue management models with customer choice that approximates the value function of the Markov decision process with a concave function which is separable across resource inventory levels. This approach reflects the intuitive interpretation of diminishing marginal utility of inventory levels and allows for significantly improved accuracy compared to currently available methods. The model allows for arbitrary aggregation of inventory units and thereby reduction of computational workload, yields upper bounds on the optimal expected revenue that are provably at least as tight as those obtained from previous approaches, and is asymptotically optimal under fluid scaling. Computational experiments for the multinomial logit choice model with distinct consideration sets show that policies derived from our approach outperform available alternatives, and we demonstrate how aggregation can be used to balance solution quality and runtime.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Webpage
Download Restriction: no

Paper provided by Department of Management Science, Lancaster University in its series Working Papers with number MRG/0008.

in new window

Length: 33 pages
Date of creation: Jul 2008
Date of revision: Apr 2010
Handle: RePEc:lms:mansci:mrg-0008
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Joern Meissner & Arne Strauss & Kalyan Talluri, 2011. "An Enhanced Concave Program Relaxation for Choice Network Revenue Management," Working Papers MRG/0020, Department of Management Science, Lancaster University, revised Jan 2011.
  2. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
  3. Joern Meissner & Arne Strauss, 2009. "Choice-Based Network Revenue Management under Weak Market Segmentation," Working Papers MRG/0012, Department of Management Science, Lancaster University, revised May 2010.
  4. Garrett van Ryzin & Gustavo Vulcano, 2008. "Computing Virtual Nesting Controls for Network Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 448-467, October.
  5. Zhang, Dan & Cooper, William L., 2009. "Pricing substitutable flights in airline revenue management," European Journal of Operational Research, Elsevier, vol. 197(3), pages 848-861, September.
  6. Wen-Chyuan Chiang & Jason C.H. Chen & Xiaojing Xu, 2007. "An overview of research on revenue management: current issues and future research," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 1(1), pages 97-128.
  7. Chen, Lijian & Homem-de-Mello, Tito, 2010. "Mathematical programming models for revenue management under customer choice," European Journal of Operational Research, Elsevier, vol. 203(2), pages 294-305, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lms:mansci:mrg-0008. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joern Meissner)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.