IDEAS home Printed from https://ideas.repec.org/p/lms/mansci/mrg-0016.html
   My bibliography  Save this paper

Improved Bid Prices for Choice-Based Network Revenue Management

Author

Listed:
  • Joern Meissner

    (Department of Management Science, Lancaster University Management School)

  • Arne Strauss

    (Department of Management Science, Lancaster University Management School)

Abstract

In many implemented network revenue management systems, a bid price control is being used. In this form of control, bid prices are attached to resources, and a product is offered if the revenue derived from it exceeds the sum of the bid prices of its consumed resources. This approach is appealing because once bid prices have been determined, it is fairly simple to derive the products that should be offered. Yet it is still unknown how well a bid price control actually performs. Recently, considerable progress has been made with network revenue management by incorporating customer purchase behavior via discrete choice models. However, the majority of authors have presented control policies for the booking process that are expressed in terms of which combination of products to offer at a given point in time and given resource inventories. The recommended combination of products as identified by these policies might not be representable through bid price control. If demand were independent from available product alternatives, an optimal choice of bid prices is to use the marginal value of capacity for each resource in the network. But under dependent demand, this is not necessarily the case. In fact, it seems that these bid prices are typically not restrictive enough and result in buy-down effects. We propose (1) a simple and fast heuristic that iteratively improves on an initial guess for the bid price vector; this first guess could be, for example, dynamic estimates of the marginal value of capacity. Moreover, (2) we demonstrate that using these dynamic marginal capacity values directly as bid prices can lead to significant revenue loss as compared to using our heuristic. Finally, (3) we investigate numerically how much revenue performance is lost due to the confinement of product combinations that can be represented by a bid price. Our heuristic is not restricted to a particular choice model and can be combined with any method that provides estimates of the marginal values of capacity. In our numerical experiments, we test the heuristic on some popular networks examples taken from peer literature. We use a multinomial logit choice model which allows customers from different segments to have products in common that they are considering purchasing. In most instances, our heuristic policy results in significant revenue gains over some currently available alternatives at low computational cost.

Suggested Citation

  • Joern Meissner & Arne Strauss, 2010. "Improved Bid Prices for Choice-Based Network Revenue Management," Working Papers MRG/0016, Department of Management Science, Lancaster University, revised Jan 2010.
  • Handle: RePEc:lms:mansci:mrg-0016
    as

    Download full text from publisher

    File URL: http://www.meiss.com/en/publications/bid-prices-network-revenue-management.html
    File Function: Webpage
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huseyin Topaloglu, 2009. "Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 637-649, June.
    2. Kalyan Talluri & Garrett van Ryzin, 1999. "A Randomized Linear Programming Method for Computing Network Bid Prices," Transportation Science, INFORMS, vol. 33(2), pages 207-216, May.
    3. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    4. Guillermo Gallego & Robert Phillips, 2004. "Revenue Management of Flexible Products," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 321-337, January.
    5. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    6. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    7. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    8. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    9. Dan Zhang & Daniel Adelman, 2009. "An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice," Transportation Science, INFORMS, vol. 43(3), pages 381-394, August.
    10. Daniel Adelman, 2007. "Dynamic Bid Prices in Revenue Management," Operations Research, INFORMS, vol. 55(4), pages 647-661, August.
    11. Garrett van Ryzin & Gustavo Vulcano, 2008. "Computing Virtual Nesting Controls for Network Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 448-467, October.
    12. Zhang, Dan & Cooper, William L., 2009. "Pricing substitutable flights in airline revenue management," European Journal of Operational Research, Elsevier, vol. 197(3), pages 848-861, September.
    13. Wen-Chyuan Chiang & Jason C.H. Chen & Xiaojing Xu, 2007. "An overview of research on revenue management: current issues and future research," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 1(1), pages 97-128.
    14. Chen, Lijian & Homem-de-Mello, Tito, 2010. "Mathematical programming models for revenue management under customer choice," European Journal of Operational Research, Elsevier, vol. 203(2), pages 294-305, June.
    15. Dan Zhang & William L. Cooper, 2005. "Revenue Management for Parallel Flights with Customer-Choice Behavior," Operations Research, INFORMS, vol. 53(3), pages 415-431, June.
    16. S. L. Brumelle & J. I. McGill & T. H. Oum & K. Sawaki & M. W. Tretheway, 1990. "Allocation of Airline Seats between Stochastically Dependent Demands," Transportation Science, INFORMS, vol. 24(3), pages 183-192, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gönsch, Jochen & Koch, Sebastian & Steinhardt, Claudius, 2014. "Revenue management with flexible products: The value of flexibility and its incorporation into DLP-based approaches," International Journal of Production Economics, Elsevier, vol. 153(C), pages 280-294.
    2. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    3. Sebastian Koch & Jochen Gönsch & Michael Hassler & Robert Klein, 2016. "Practical decision rules for risk-averse revenue management using simulation-based optimization," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(6), pages 468-487, December.
    4. Hosseinalifam, M. & Marcotte, P. & Savard, G., 2016. "A new bid price approach to dynamic resource allocation in network revenue management," European Journal of Operational Research, Elsevier, vol. 255(1), pages 142-150.
    5. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    2. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    3. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    4. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    5. Dan Zhang, 2011. "An Improved Dynamic Programming Decomposition Approach for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 35-52, April.
    6. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    7. Juan M. Chaneton & Gustavo Vulcano, 2011. "Computing Bid Prices for Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 452-470, October.
    8. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    9. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    10. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    11. Dan Zhang & Zhaosong Lu, 2013. "Assessing the Value of Dynamic Pricing in Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 102-115, February.
    12. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    13. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    14. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
    15. Gönsch, Jochen & Koch, Sebastian & Steinhardt, Claudius, 2014. "Revenue management with flexible products: The value of flexibility and its incorporation into DLP-based approaches," International Journal of Production Economics, Elsevier, vol. 153(C), pages 280-294.
    16. Dan Zhang & Daniel Adelman, 2009. "An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice," Transportation Science, INFORMS, vol. 43(3), pages 381-394, August.
    17. Sumit Kunnumkal & Kalyan Talluri, 2019. "A strong Lagrangian relaxation for general discrete-choice network revenue management," Computational Optimization and Applications, Springer, vol. 73(1), pages 275-310, May.
    18. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
    19. Sebastian Koch & Jochen Gönsch & Michael Hassler & Robert Klein, 2016. "Practical decision rules for risk-averse revenue management using simulation-based optimization," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(6), pages 468-487, December.
    20. Steinhardt, Claudius & Gönsch, Jochen, 2012. "Integrated revenue management approaches for capacity control with planned upgrades," European Journal of Operational Research, Elsevier, vol. 223(2), pages 380-391.

    More about this item

    Keywords

    revenue management; network; bid prices; choice model;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lms:mansci:mrg-0016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joern Meissner (email available below). General contact details of provider: https://edirc.repec.org/data/degraus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.