IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v10y2008i2p288-310.html
   My bibliography  Save this article

On the Choice-Based Linear Programming Model for Network Revenue Management

Author

Listed:
  • Qian Liu

    () (Industrial Engineering and Logistics Management Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Garrett van Ryzin

    () (Graduate School of Business, Columbia University, New York, New York 10027)

Abstract

Gallego et al. [Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Managing flexible products on a network. CORC Technical Report TR-2004-01, Department of Industrial Engineering and Operations Research, Columbia University, New York.] recently proposed a choice-based deterministic linear programming model (CDLP) for network revenue management (RM) that parallels the widely used deterministic linear programming (DLP) model. While they focused on analyzing "flexible products"--a situation in which the provider has the flexibility of using a collection of products (e.g., different flight times and/or itineraries) to serve the same market demand (e.g., an origin-destination connection)--their approach has broader implications for understanding choice-based RM on a network. In this paper, we explore the implications in detail. Specifically, we characterize optimal offer sets (sets of available network products) by extending to the network case a notion of "efficiency" developed by Talluri and van Ryzin [Talluri, K. T., G. J. van Ryzin. 2004. Revenue management under a general discrete choice model of consumer behavior. Management Sci. 50 15-33.] for the single-leg, choice-based RM problem. We show that, asymptotically, as demand and capacity are scaled up, only these efficient sets are used in an optimal policy. This analysis suggests that efficiency is a potentially useful approach for identifying "good" offer sets on networks, as it is in the case of single-leg problems. Second, we propose a practical decomposition heuristic for converting the static CDLP solution into a dynamic control policy. The heuristic is quite similar to the familiar displacement-adjusted virtual nesting (DAVN) approximation used in traditional network RM, and it significantly improves on the performance of the static LP solution. We illustrate the heuristic on several numerical examples.

Suggested Citation

  • Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
  • Handle: RePEc:inm:ormsom:v:10:y:2008:i:2:p:288-310
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1070.0169
    Download Restriction: no

    References listed on IDEAS

    as
    1. Youyi Feng & Guillermo Gallego, 1995. "Optimal Starting Times for End-of-Season Sales and Optimal Stopping Times for Promotional Fares," Management Science, INFORMS, vol. 41(8), pages 1371-1391, August.
    2. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    3. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Youyi Feng & Baichun Xiao, 2000. "A Continuous-Time Yield Management Model with Multiple Prices and Reversible Price Changes," Management Science, INFORMS, vol. 46(5), pages 644-657, May.
    6. Youyi Feng & Guillermo Gallego, 2000. "Perishable Asset Revenue Management with Markovian Time Dependent Demand Intensities," Management Science, INFORMS, vol. 46(7), pages 941-956, July.
    7. Constantinos Maglaras & Joern Meissner, 2006. "Dynamic Pricing Strategies for Multiproduct Revenue Management Problems," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 136-148, July.
    8. Andersson, Sven-Eric, 1989. "Operational planning in airline business -- Can science improve efficiency? Experiences from SAS," European Journal of Operational Research, Elsevier, vol. 43(1), pages 3-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumit Kunnumkal & Kalyan Talluri, 2014. "On the Tractability of the Piecewiselinear Approximation for General Discrete-Choice Network Revenue Management," Working Papers 749, Barcelona Graduate School of Economics.
    2. Houyuan Jiang & Zhan Pang, 2011. "Network capacity management under competition," Computational Optimization and Applications, Springer, vol. 50(2), pages 287-326, October.
    3. Gönsch, Jochen & Koch, Sebastian & Steinhardt, Claudius, 2014. "Revenue management with flexible products: The value of flexibility and its incorporation into DLP-based approaches," International Journal of Production Economics, Elsevier, vol. 153(C), pages 280-294.
    4. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    5. Joern Meissner & Arne Strauss & Kalyan Talluri, 2011. "An Enhanced Concave Program Relaxation for Choice Network Revenue Management," Working Papers MRG/0020, Department of Management Science, Lancaster University, revised Jan 2011.
    6. Steinhardt, Claudius & Gönsch, Jochen, 2012. "Integrated revenue management approaches for capacity control with planned upgrades," European Journal of Operational Research, Elsevier, vol. 223(2), pages 380-391.
    7. repec:eee:proeco:v:193:y:2017:i:c:p:352-364 is not listed on IDEAS
    8. repec:eee:joreco:v:39:y:2017:i:c:p:190-200 is not listed on IDEAS
    9. Giorgio Grani & Gianmaria Leo & Laura Palagi & Mauro Piacentini, 2016. "Revenue Management: a Market-Service decomposition approach for the Sales Based Integer Program model," DIAG Technical Reports 2016-04, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    10. Meissner, Joern & Strauss, Arne, 2012. "Improved bid prices for choice-based network revenue management," European Journal of Operational Research, Elsevier, vol. 217(2), pages 417-427.
    11. Gustavo Vulcano & Garrett van Ryzin & Wassim Chaar, 2010. "OM Practice--Choice-Based Revenue Management: An Empirical Study of Estimation and Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 12(3), pages 371-392, February.
    12. Chen, Lijian & Homem-de-Mello, Tito, 2010. "Mathematical programming models for revenue management under customer choice," European Journal of Operational Research, Elsevier, vol. 203(2), pages 294-305, June.
    13. Shadi Azadeh & M. Hosseinalifam & G. Savard, 2015. "The impact of customer behavior models on revenue management systems," Computational Management Science, Springer, vol. 12(1), pages 99-109, January.
    14. Weaver, Robert D. & Moon, Yongma, 2011. "Pricing Perishables," 2011 International European Forum, February 14-18, 2011, Innsbruck-Igls, Austria 122007, International European Forum on Innovation and System Dynamics in Food Networks.
    15. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    16. Sumit Kunnumkal & Kalyan Talluri, 2012. "A New Compact Linear Programming Formulation for Choice Network Revenue Management," Working Papers 677, Barcelona Graduate School of Economics.
    17. Petr Fiala, 2012. "A framework for solving network revenue management problems with customer choice behavior," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 383-392, September.
    18. Li, Dong & Pang, Zhan, 2017. "Dynamic booking control for car rental revenue management: A decomposition approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 850-867.
    19. Sierag, D.D. & Koole, G.M. & van der Mei, R.D. & van der Rest, J.I. & Zwart, B., 2015. "Revenue management under customer choice behaviour with cancellations and overbooking," European Journal of Operational Research, Elsevier, vol. 246(1), pages 170-185.
    20. Hosseinalifam, M. & Marcotte, P. & Savard, G., 2016. "A new bid price approach to dynamic resource allocation in network revenue management," European Journal of Operational Research, Elsevier, vol. 255(1), pages 142-150.
    21. Arne Strauss & Kalyan Talluri, 2012. "A tractable consideration set structure for network revenue management," Economics Working Papers 1303, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2012.
    22. Sumit Kunnumkal & Kalyan Talluri, 2012. "A new compact linear programming formulation for choice network revenue management," Economics Working Papers 1349, Department of Economics and Business, Universitat Pompeu Fabra.
    23. Sumit Kunnumkal & Kalyan Talluri, 2014. "On the tractability of the piecewise-linear approximation for general discrete-choice network revenue management," Economics Working Papers 1409, Department of Economics and Business, Universitat Pompeu Fabra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:10:y:2008:i:2:p:288-310. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.