IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v96y2016icp95-112.html
   My bibliography  Save this article

Stochastic seat allocation models for passenger rail transportation under customer choice

Author

Listed:
  • Wang, Xinchang
  • Wang, Hua
  • Zhang, Xiaoning

Abstract

We study the seat allocation problem for passenger rail revenue management, in which a rail operator attempts to determine the optimal quantity of seats to be allocated to each cabin class for each train service. We formulate the problem with single-stage and multi-stage decisions as two stochastic programming models that incorporate passengers’ choice behavior. We transform the stochastic models into equivalent deterministic mathematical programs that are easy to solve. Then, we form a variety of seat allocation polices from the optimal solutions to the seat allocation models. A number of simulation tests are offered to test the policies.

Suggested Citation

  • Wang, Xinchang & Wang, Hua & Zhang, Xiaoning, 2016. "Stochastic seat allocation models for passenger rail transportation under customer choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 95-112.
  • Handle: RePEc:eee:transe:v:96:y:2016:i:c:p:95-112
    DOI: 10.1016/j.tre.2016.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516302502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2016.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kraft, Edwin R. & Srikar, Bellur N. & Phillips, Robert L., 2000. "Revenue Management in Railroad Applications," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 39(1).
    2. Janakiram Subramanian & Shaler Stidham & Conrad J. Lautenbacher, 1999. "Airline Yield Management with Overbooking, Cancellations, and No-Shows," Transportation Science, INFORMS, vol. 33(2), pages 147-167, May.
    3. Daniel Adelman, 2007. "Dynamic Bid Prices in Revenue Management," Operations Research, INFORMS, vol. 55(4), pages 647-661, August.
    4. A. Ciancimino & G. Inzerillo & S. Lucidi & L. Palagi, 1999. "A Mathematical Programming Approach for the Solution of the Railway Yield Management Problem," Transportation Science, INFORMS, vol. 33(2), pages 168-181, May.
    5. Peter P. Belobaba, 1987. "Survey Paper---Airline Yield Management An Overview of Seat Inventory Control," Transportation Science, INFORMS, vol. 21(2), pages 63-73, May.
    6. Alexander Armstrong & Joern Meissner, 2010. "Railway Revenue Management: Overview and Models (Operations Research)," Working Papers MRG/0019, Department of Management Science, Lancaster University, revised Jul 2010.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    8. Christopher P. Wright & Harry Groenevelt & Robert A. Shumsky, 2010. "Dynamic Revenue Management in Airline Alliances," Transportation Science, INFORMS, vol. 44(1), pages 15-37, February.
    9. Dimitris Bertsimas & Ioana Popescu, 2003. "Revenue Management in a Dynamic Network Environment," Transportation Science, INFORMS, vol. 37(3), pages 257-277, August.
    10. Kraft, Edwin R., 2002. "Scheduling railway freight delivery appointments using a bid price approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(2), pages 145-165, February.
    11. Huseyin Topaloglu, 2009. "Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 637-649, June.
    12. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    13. Hetrakul, Pratt & Cirillo, Cinzia, 2014. "A latent class choice based model system for railway optimal pricing and seat allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 68-83.
    14. Peter P. Belobaba, 1989. "OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control," Operations Research, INFORMS, vol. 37(2), pages 183-197, April.
    15. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianqiang Wang & Wenlong Zhao & Chenglin Liu & Zhipeng Huang, 2023. "A System Optimization Approach for Trains’ Operation Plan with a Time Flexible Pricing Strategy for High-Speed Rail Corridors," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    2. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).
    3. Xu, Guangming & Zhong, Linhuan & Liu, Wei & Guo, Jing, 2024. "A flexible train composition strategy with extra-long trains for high-speed railway corridors with time-varying demand," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    4. Xu, Guangming & Liu, Yihan & Gao, Yihan & Liu, Wei, 2023. "Integrated optimization of train stopping plan and seat allocation scheme for railway systems under equilibrium travel choice and elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Xu, Guangming & Zhong, Linhuan & Hu, Xinlei & Liu, Wei, 2022. "Optimal pricing and seat allocation schemes in passenger railway systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    6. Yu Wang & Xinghua Shan & Hongye Wang & Junfeng Zhang & Xiaoyan Lv & Jinfei Wu, 2022. "Ticket Allocation Optimization of Fuxing Train Based on Overcrowding Control: An Empirical Study from China," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    7. Xiang Zhao & Xinghua Shan & Jinfei Wu, 2023. "The Impact of Seat Resource Fragmentation on Railway Network Revenue Management," Networks and Spatial Economics, Springer, vol. 23(1), pages 135-177, March.
    8. Haque, Md Tabish & Hamid, Faiz, 2022. "An optimization model to assign seats in long distance trains to minimize SARS-CoV-2 diffusion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 104-120.
    9. Chen, Pengfang & Zhang, Xiaoqiang & Gao, Dongsheng, 2024. "Preference heterogeneity analysis on train choice behaviour of high-speed railway passengers: A case study in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    10. Jin Qin & Xiqiong Li & Kang Yang & Guangming Xu, 2022. "Joint Optimization of Ticket Pricing Strategy and Train Stop Plan for High-Speed Railway: A Case Study," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    11. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    12. Jin Qin & Yijia Zeng & Xia Yang & Yuxin He & Xuanke Wu & Wenxuan Qu, 2019. "Time-Dependent Pricing for High-Speed Railway in China Based on Revenue Management," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    13. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tingsong & Meng, Qiang & Tian, Xuecheng, 2024. "Dynamic container slot allocation for a liner shipping service," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    2. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    3. Xu, Guangming & Zhong, Linhuan & Hu, Xinlei & Liu, Wei, 2022. "Optimal pricing and seat allocation schemes in passenger railway systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).
    5. Xiang Zhao & Xinghua Shan & Jinfei Wu, 2023. "The Impact of Seat Resource Fragmentation on Railway Network Revenue Management," Networks and Spatial Economics, Springer, vol. 23(1), pages 135-177, March.
    6. Wang, Hua & Wang, Xinchang & Zhang, Xiaoning, 2017. "Dynamic resource allocation for intermodal freight transportation with network effects: Approximations and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 83-112.
    7. Sebastian Koch & Jochen Gönsch & Claudius Steinhardt, 2017. "Dynamic Programming Decomposition for Choice-Based Revenue Management with Flexible Products," Transportation Science, INFORMS, vol. 51(4), pages 1046-1062, November.
    8. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    9. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    10. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    11. Pak, K. & Dekker, R. & Kindervater, G.A.P., 2003. "Airline Revenue Management with Shifting Capacity," Econometric Institute Research Papers ERS-2003-091-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Alexander Erdelyi & Huseyin Topaloglu, 2010. "A Dynamic Programming Decomposition Method for Making Overbooking Decisions Over an Airline Network," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 443-456, August.
    13. Ş. İlker Birbil & J. B. G. Frenk & Joaquim A. S. Gromicho & Shuzhong Zhang, 2014. "A Network Airline Revenue Management Framework Based on Decomposition by Origins and Destinations," Transportation Science, INFORMS, vol. 48(3), pages 313-333, August.
    14. Li, Dongjun & Islam, Dewan Md Zahurul & Robinson, Mark & Song, Dong-Ping & Dong, Jing-Xin & Reimann, Marc, 2024. "Network revenue management game in the railway industry: Stackelberg equilibrium, global optimality, and mechanism design," European Journal of Operational Research, Elsevier, vol. 312(1), pages 240-254.
    15. Dong Li & Zhan Pang & Lixian Qian, 2023. "Bid price controls for car rental network revenue management," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 261-282, January.
    16. Benoit Lardeux & Gabrielle Sabatier & Thierry Delahaye & Mourad Boudia & Odile Tonnet & Pierre Mathieu, 2019. "Yield optimization for airlines from ticket resell," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(3), pages 213-227, June.
    17. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    18. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    19. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
    20. Kavitha Balaiyan & R. K. Amit & Atul Kumar Malik & Xiaodong Luo & Amit Agarwal, 2019. "Joint forecasting for airline pricing and revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(6), pages 465-482, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:96:y:2016:i:c:p:95-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.