IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v177y2023ics1366554523002193.html
   My bibliography  Save this article

Integrated optimization of train stopping plan and seat allocation scheme for railway systems under equilibrium travel choice and elastic demand

Author

Listed:
  • Xu, Guangming
  • Liu, Yihan
  • Gao, Yihan
  • Liu, Wei

Abstract

This paper examines the integrated optimization of train stopping plan and seat allocation scheme in railway systems, where equilibrium passenger travel choice under elastic demand is considered. The integrated optimization problem is formulated as a non-concave and non-linear mixed-integer mathematical model, where the objective is to maximize the system net benefit considering ticket revenue, consumer surplus, and cost associated with train stoppings. The integrated optimization model can be reformulated into a mixed-integer linear programming (MILP) model based on a series of linearization, relaxation, and outer-approximation techniques, which can then be solved by commercial MILP solvers (e.g., GUROBI). We also compare the integrated optimization approach with that when the train stopping plan and seat allocation are optimized separately and identify the potential benefits. Numerical studies have been conducted on a small-scale example, the Zhengzhou-Xi’an and Shanghai-Beijing high-speed railway corridors to illustrate the proposed model and solution approach.

Suggested Citation

  • Xu, Guangming & Liu, Yihan & Gao, Yihan & Liu, Wei, 2023. "Integrated optimization of train stopping plan and seat allocation scheme for railway systems under equilibrium travel choice and elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:transe:v:177:y:2023:i:c:s1366554523002193
    DOI: 10.1016/j.tre.2023.103231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523002193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhujun & Shalaby, Amer & Roorda, Matthew J. & Mao, Baohua, 2021. "Urban rail service design for collaborative passenger and freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    2. A. Ciancimino & G. Inzerillo & S. Lucidi & L. Palagi, 1999. "A Mathematical Programming Approach for the Solution of the Railway Yield Management Problem," Transportation Science, INFORMS, vol. 33(2), pages 168-181, May.
    3. Zhang, Fangni & Yang, Zhiwei & Jiao, Jingjuan & Liu, Wei & Wu, Wenjie, 2020. "The effects of high-speed rail development on regional equity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 180-202.
    4. Alexander Armstrong & Joern Meissner, 2010. "Railway Revenue Management: Overview and Models (Operations Research)," Working Papers MRG/0019, Department of Management Science, Lancaster University, revised Jul 2010.
    5. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.
    6. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    7. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    8. Hetrakul, Pratt & Cirillo, Cinzia, 2014. "A latent class choice based model system for railway optimal pricing and seat allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 68-83.
    9. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    10. Goossens, Jan-Willem & van Hoesel, Stan & Kroon, Leo, 2006. "On solving multi-type railway line planning problems," European Journal of Operational Research, Elsevier, vol. 168(2), pages 403-424, January.
    11. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    12. Chang, Yu-Hern & Yeh, Chung-Hsing & Shen, Ching-Cheng, 2000. "A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 91-106, February.
    13. Xin Zhang & Lei Nie & Xin Wu & Yu Ke, 2020. "How to Optimize Train Stops under Diverse Passenger Demand: a New Line Planning Method for Large-Scale High-Speed Rail Networks," Networks and Spatial Economics, Springer, vol. 20(4), pages 963-988, December.
    14. Batarce, Marco & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2016. "Valuing crowding in public transport: Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 358-378.
    15. Wang, Xinchang & Wang, Hua & Zhang, Xiaoning, 2016. "Stochastic seat allocation models for passenger rail transportation under customer choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 95-112.
    16. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    17. Hong K. Lo, 2001. "A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans," Transportation Science, INFORMS, vol. 35(2), pages 148-164, May.
    18. Zhou, Yu & Yang, Hai & Wang, Yun & Yan, Xuedong, 2021. "Integrated line configuration and frequency determination with passenger path assignment in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 134-151.
    19. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    20. Lan, Yingjie & Ball, Michael O. & Karaesmen, Itir Z. & Zhang, Jean X. & Liu, Gloria X., 2015. "Analysis of seat allocation and overbooking decisions with hybrid information," European Journal of Operational Research, Elsevier, vol. 240(2), pages 493-504.
    21. Qi, Jianguo & Yang, Lixing & Di, Zhen & Li, Shukai & Yang, Kai & Gao, Yuan, 2018. "Integrated optimization for train operation zone and stop plan with passenger distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 151-173.
    22. You, Peng-Sheng, 2008. "An efficient computational approach for railway booking problems," European Journal of Operational Research, Elsevier, vol. 185(2), pages 811-824, March.
    23. Jian, Sisi & Liu, Wei & Wang, Xiaolei & Yang, Hai & Waller, S. Travis, 2020. "On integrating carsharing and parking sharing services," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 19-44.
    24. Chen, Xinyuan & Zhang, Wei & Guo, Xiaomeng & Liu, Zhiyuan & Wang, Shuaian, 2021. "An improved learning-and-optimization train fare design method for addressing commuting congestion at CBD stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    25. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    26. Xichun Chen & Junli Wang, 2016. "Collaborative Optimization of Stop Schedule Plan and Ticket Allotment for the Intercity Train," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-7, January.
    27. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    28. Lo, Hong K., 1999. "A novel traffic signal control formulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 433-448, August.
    29. Yang, Lixing & Qi, Jianguo & Li, Shukai & Gao, Yuan, 2016. "Collaborative optimization for train scheduling and train stop planning on high-speed railways," Omega, Elsevier, vol. 64(C), pages 57-76.
    30. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    31. Shi, Feng & Zhou, Zhao & Yao, Jia & Huang, Helai, 2012. "Incorporating transfer reliability into equilibrium analysis of railway passenger flow," European Journal of Operational Research, Elsevier, vol. 220(2), pages 378-385.
    32. Xu, Guangming & Zhong, Linhuan & Hu, Xinlei & Liu, Wei, 2022. "Optimal pricing and seat allocation schemes in passenger railway systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guangming & Zhong, Linhuan & Hu, Xinlei & Liu, Wei, 2022. "Optimal pricing and seat allocation schemes in passenger railway systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).
    3. Xin Zhang & Lei Nie & Xin Wu & Yu Ke, 2020. "How to Optimize Train Stops under Diverse Passenger Demand: a New Line Planning Method for Large-Scale High-Speed Rail Networks," Networks and Spatial Economics, Springer, vol. 20(4), pages 963-988, December.
    4. Jin Qin & Xiqiong Li & Kang Yang & Guangming Xu, 2022. "Joint Optimization of Ticket Pricing Strategy and Train Stop Plan for High-Speed Railway: A Case Study," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    5. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    6. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    7. Xueyi Guan & Jin Qin & Chenghui Mao & Wenliang Zhou, 2023. "A Literature Review of Railway Pricing Based on Revenue Management," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    8. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    9. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    10. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    11. Shuo Zhao & Xiwei Mi & Zhenyi Li, 2019. "A Stop-Probability Approach for O-D Service Frequency on High-Speed Railway Lines," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    12. Jin Qin & Yijia Zeng & Xia Yang & Yuxin He & Xuanke Wu & Wenxuan Qu, 2019. "Time-Dependent Pricing for High-Speed Railway in China Based on Revenue Management," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    13. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.
    14. Xiang Zhao & Xinghua Shan & Jinfei Wu, 2023. "The Impact of Seat Resource Fragmentation on Railway Network Revenue Management," Networks and Spatial Economics, Springer, vol. 23(1), pages 135-177, March.
    15. Wu, Yinghui & Yang, Hai & Zhao, Shuo & Shang, Pan, 2021. "Mitigating unfairness in urban rail transit operation: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 418-442.
    16. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    17. Zilong Fan & Di Liu & Wenyu Rong & Chengrui Li, 2022. "A Multi-Objective Optimization Model for the Intercity Railway Train Operation Plan: The Case of Beijing-Xiong’an ICR," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    18. Yu Wang & Xinghua Shan & Hongye Wang & Junfeng Zhang & Xiaoyan Lv & Jinfei Wu, 2022. "Ticket Allocation Optimization of Fuxing Train Based on Overcrowding Control: An Empirical Study from China," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    19. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    20. Svetla Stoilova, 2020. "An Integrated Multi-Criteria and Multi-Objective Optimization Approach for Establishing the Transport Plan of Intercity Trains," Sustainability, MDPI, vol. 12(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:177:y:2023:i:c:s1366554523002193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.