My bibliography
Save this item
Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
- Ganapathy Ramesh & Jaganathan Logeshwaran & Thangavel Kiruthiga & Jaime Lloret, 2023. "Prediction of Energy Production Level in Large PV Plants through AUTO-Encoder Based Neural-Network (AUTO-NN) with Restricted Boltzmann Feature Extraction," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- Tserenpurev Chuluunsaikhan & Jeong-Hun Kim & Yoonsung Shin & Sanghyun Choi & Aziz Nasridinov, 2022. "Feasibility Study on the Influence of Data Partition Strategies on Ensemble Deep Learning: The Case of Forecasting Power Generation in South Korea," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Zhu, Jiebei & Li, Mingrui & Luo, Lin & Zhang, Bidan & Cui, Mingjian & Yu, Lujie, 2023. "Short-term PV power forecast methodology based on multi-scale fluctuation characteristics extraction," Renewable Energy, Elsevier, vol. 208(C), pages 141-151.
- Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
- Rotaru Cătălin-Laurențiu & Timiş Diana & Grădinaru Giani-Ionel, 2023. "Efficient Capture of Solar Energy in Romania: Approach in Territorial Profile Using Predictive Statistical Techniques," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 1519-1533, July.
- Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
- Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George Anders, 2023. "Deep and Machine Learning Models to Forecast Photovoltaic Power Generation," Energies, MDPI, vol. 16(10), pages 1-24, May.
- Hui Wang & Su Yan & Danyang Ju & Nan Ma & Jun Fang & Song Wang & Haijun Li & Tianyu Zhang & Yipeng Xie & Jun Wang, 2023. "Short-Term Photovoltaic Power Forecasting Based on a Feature Rise-Dimensional Two-Layer Ensemble Learning Model," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
- Knolmajer, Attila & Bálint, Roland & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2024. "Quaternion-based irradiance calculation method applicable to solar power plants energy production," Energy, Elsevier, vol. 309(C).
- Zhang, Meijuan & Yan, Qingyou & Guan, Yajuan & Ni, Da & Agundis Tinajero, Gibran David, 2024. "Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties," Energy, Elsevier, vol. 298(C).
- Rita Teixeira & Adelaide Cerveira & Eduardo J. Solteiro Pires & José Baptista, 2024. "Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods," Energies, MDPI, vol. 17(14), pages 1-30, July.
- Ashok Bhansali & Namala Narasimhulu & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Dayanand Lal Narayan, 2023. "A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models," Energies, MDPI, vol. 16(17), pages 1-18, August.
- Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
- Zhang, Jinlai & Yang, Wenjie & Chen, Yumei & Ding, Mingkang & Huang, Huiling & Wang, Bingkun & Gao, Kai & Chen, Shuhan & Du, Ronghua, 2024. "Fast object detection of anomaly photovoltaic (PV) cells using deep neural networks," Applied Energy, Elsevier, vol. 372(C).
- Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
- Mondal, Rakesh & Roy, Surajit Kr & Giri, Chandan, 2024. "Solar power forecasting using domain knowledge," Energy, Elsevier, vol. 302(C).
- Udenze, Peter I. & Gong, Jiaqi & Soltani, Shohreh & Li, Dawen, 2025. "A deep neural network with two-step decomposition technique for predicting ultra-short-term solar power and electrical load," Applied Energy, Elsevier, vol. 382(C).
- Amini Toosi, Hashem & Del Pero, Claudio & Leonforte, Fabrizio & Lavagna, Monica & Aste, Niccolò, 2023. "Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization," Applied Energy, Elsevier, vol. 334(C).
- Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
- Yue Yu & Jiahui Guo & Zhaoyang Jin, 2023. "Optimal Extreme Random Forest Ensemble for Active Distribution Network Forecasting-Aided State Estimation Based on Maximum Average Energy Concentration VMD State Decomposition," Energies, MDPI, vol. 16(15), pages 1-25, July.
- Jose Cruz & Christian Romero & Oscar Vera & Saul Huaquipaco & Norman Beltran & Wilson Mamani, 2023. "Multiparameter Regression of a Photovoltaic System by Applying Hybrid Methods with Variable Selection and Stacking Ensembles under Extreme Conditions of Altitudes Higher than 3800 Meters above Sea Lev," Energies, MDPI, vol. 16(12), pages 1-21, June.
- Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2022. "SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting," Energies, MDPI, vol. 15(18), pages 1-55, September.
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Jeongin Lee & Jongwoo Choi & Wanki Park & Ilwoo Lee, 2023. "A Dual-Stage Solar Power Prediction Model That Reflects Uncertainties in Weather Forecasts," Energies, MDPI, vol. 16(21), pages 1-19, October.
- Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
- Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
- Abdallah Abdellatif & Hamza Mubarak & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Ahmad Hammoudeh & Hamdan Abdellatef & M. M. Rahman & Hassan Muwafaq Gheni, 2022. "Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
- Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
- Sameer Al-Dahidi & Manoharan Madhiarasan & Loiy Al-Ghussain & Ahmad M. Abubaker & Adnan Darwish Ahmad & Mohammad Alrbai & Mohammadreza Aghaei & Hussein Alahmer & Ali Alahmer & Piero Baraldi & Enrico Z, 2024. "Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework," Energies, MDPI, vol. 17(16), pages 1-38, August.
- Bowen Zhou & Xinyu Chen & Guangdi Li & Peng Gu & Jing Huang & Bo Yang, 2023. "XGBoost–SFS and Double Nested Stacking Ensemble Model for Photovoltaic Power Forecasting under Variable Weather Conditions," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
- Hamza Mubarak & Mohammad J. Sanjari & Sascha Stegen & Abdallah Abdellatif, 2023. "Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study," Energies, MDPI, vol. 16(21), pages 1-32, October.
- Li, Peidu & Luo, Yong & Xia, Xin & Gao, Xiaoqing & Chang, Rui & Li, Zhenchao & Zheng, Junqing & Shi, Wen & Liao, Zhouyi, 2024. "Factors and quantitative impact on electrical yield in fishery complementary photovoltaic power plant under different cloud cover conditions," Energy, Elsevier, vol. 309(C).
- Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
- Nunes Maciel, Joylan & Javier Gimenez Ledesma, Jorge & Hideo Ando Junior, Oswaldo, 2024. "Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Linh Bui Duy & Ninh Nguyen Quang & Binh Doan Van & Eleonora Riva Sanseverino & Quynh Tran Thi Tu & Hang Le Thi Thuy & Sang Le Quang & Thinh Le Cong & Huyen Cu Thi Thanh, 2024. "Refining Long Short-Term Memory Neural Network Input Parameters for Enhanced Solar Power Forecasting," Energies, MDPI, vol. 17(16), pages 1-22, August.
- Rosen, Karol & Angeles-Camacho, César & Elvira, Víctor & Guillén-Burguete, Servio Tulio, 2023. "Intra-hour photovoltaic forecasting through a time-varying Markov switching model," Energy, Elsevier, vol. 278(PB).
- Leijiao Ge & Tianshuo Du & Changlu Li & Yuanliang Li & Jun Yan & Muhammad Umer Rafiq, 2022. "Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications," Energies, MDPI, vol. 15(23), pages 1-24, November.
- Pachauri, Nikhil & Ahn, Chang Wook, 2023. "Weighted aggregated ensemble model for energy demand management of buildings," Energy, Elsevier, vol. 263(PC).
- Xia, Lin & Ren, Youyang & Wang, Yuhong & Fu, Yiyang & zhou, Ke, 2024. "A novel dynamic structural adaptive multivariable grey model and its application in China's solar energy generation forecasting," Energy, Elsevier, vol. 312(C).
- Xin Ma & Yubin Cai & Hong Yuan & Yanqiao Deng, 2023. "Partially Linear Component Support Vector Machine for Primary Energy Consumption Forecasting of the Electric Power Sector in the United States," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
- Kabulo Loji & Sachin Sharma & Nomhle Loji & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Operational Issues of Contemporary Distribution Systems: A Review on Recent and Emerging Concerns," Energies, MDPI, vol. 16(4), pages 1-21, February.
- Liu, Bingchun & Huo, Xiankai, 2024. "Prediction of Photovoltaic power generation and analyzing of carbon emission reduction capacity in China," Renewable Energy, Elsevier, vol. 222(C).
- Yasemin Ayaz Atalan & Abdulkadir Atalan, 2023. "Integration of the Machine Learning Algorithms and I-MR Statistical Process Control for Solar Energy," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
- Liu, Bingchun & Song, Jiangji & Wang, Qingshan & Xu, Yan & Liu, Yifan, 2023. "Charging station forecasting and scenario analysis in China," Transport Policy, Elsevier, vol. 139(C), pages 87-98.
- Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
- Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
- Zhenyuan Zhuang & Huaizhi Wang & Cilong Yu, 2025. "Prediction of Short-Term Solar Irradiance Using the ProbSparse Attention Mechanism for a Sustainable Energy Development Strategy," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
- Bo Gu & Xi Li & Fengliang Xu & Xiaopeng Yang & Fayi Wang & Pengzhan Wang, 2023. "Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
- Neshat, Mehdi & Sergiienko, Nataliia Y. & Rafiee, Ashkan & Mirjalili, Seyedali & Gandomi, Amir H. & Boland, John, 2024. "MetaWave Learner: Predicting wave farms power output using effective meta-learner deep gradient boosting model: A case study from Australian coasts," Energy, Elsevier, vol. 304(C).
- Yukta Mehta & Vincent Lo & Vijen Mehta & Kunal Agrawal & Charan Teja Madabathula & Eugene Chang & Jerry Gao, 2025. "Renewable Electricity Management Cloud System for Smart Communities Using Advanced Machine Learning," Energies, MDPI, vol. 18(6), pages 1-29, March.
- Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
- Zhang, Qiongfang & Yan, Hao & Liu, Yongming, 2024. "Power generation forecasting for solar plants based on Dynamic Bayesian networks by fusing multi-source information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
- Ghaemi, Ali & Safari, Amin & Quteishat, Anas & Younis, Mahmoud A., 2024. "A stacking-based fault forecasting study for power transmission lines under different weather conditions," Energy, Elsevier, vol. 306(C).