IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7252-d1267260.html
   My bibliography  Save this article

Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study

Author

Listed:
  • Hamza Mubarak

    (School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia)

  • Mohammad J. Sanjari

    (School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia)

  • Sascha Stegen

    (School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia)

  • Abdallah Abdellatif

    (Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

The prevalence of substantial inductive/capacitive loads within the industrial sectors induces variations in reactive energy levels. The imbalance between active and reactive energy within the network leads to heightened losses, diminished network efficiency, and an associated escalation in operating costs. Therefore, the forecasting of active and reactive energy in the industrial sector confers notable advantages, including cost reduction, heightened operational efficiency, safeguarding of equipment, enhanced energy consumption management, and more effective assimilation of renewable energy sources. Consequently, a range of specialized forecasting methods for different applications have been developed to address these challenges effectively. This research proposes a stacked ensemble methodology, denoted as Stack-XGBoost, leveraging three distinct machine learning (ML) methods: extra trees regressor (ETR), adaptive boosting (AdaBoost), and random forest regressor (RFR), as foundational models. Moreover, the incorporation of an extreme gradient boosting (XGBoost) algorithm as a meta-learner serves to amalgamate the predictions generated by the base models, enhancing the precision of the active/reactive energy consumption forecasting using real time data for steel industry. To assess the efficacy of the proposed model, diverse performance metrics were employed. The results show that the proposed Stack-XGBoost model outperformed other forecasting methods. Additionally, a sensitivity analysis was conducted to assess the robustness of the proposed method against variations in input parameters.

Suggested Citation

  • Hamza Mubarak & Mohammad J. Sanjari & Sascha Stegen & Abdallah Abdellatif, 2023. "Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study," Energies, MDPI, vol. 16(21), pages 1-32, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7252-:d:1267260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
    2. Seokho Kim & Yujin Song & Yoondong Sung & Donghyun Seo, 2019. "Development of a Consecutive Occupancy Estimation Framework for Improving the Energy Demand Prediction Performance of Building Energy Modeling Tools," Energies, MDPI, vol. 12(3), pages 1-21, January.
    3. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    4. Spyros Giannelos & Alexandre Moreira & Dimitrios Papadaskalopoulos & Stefan Borozan & Danny Pudjianto & Ioannis Konstantelos & Mingyang Sun & Goran Strbac, 2023. "A Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector," Energies, MDPI, vol. 16(6), pages 1-37, March.
    5. Gao, Feng & Chi, Hong & Shao, Xueyan, 2021. "Forecasting residential electricity consumption using a hybrid machine learning model with online search data," Applied Energy, Elsevier, vol. 300(C).
    6. Amir Ali Safaei Pirooz & Mohammad J. Sanjari & Young-Jin Kim & Stuart Moore & Richard Turner & Wayne W. Weaver & Dipti Srinivasan & Josep M. Guerrero & Mohammad Shahidehpour, 2023. "Adaptation of High Spatio-Temporal Resolution Weather/Load Forecast in Real-World Distributed Energy-System Operation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    2. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    3. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    4. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    5. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    6. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
    7. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    8. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    9. Zhao, Haitao & Ezeh, Collins I. & Ren, Weijia & Li, Wentao & Pang, Cheng Heng & Zheng, Chenghang & Gao, Xiang & Wu, Tao, 2019. "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials," Applied Energy, Elsevier, vol. 254(C).
    10. Löhr, Yannik & Wolf, Daniel & Pollerberg, Clemens & Hörsting, Alexander & Mönnigmann, Martin, 2021. "Supervisory model predictive control for combined electrical and thermal supply with multiple sources and storages," Applied Energy, Elsevier, vol. 290(C).
    11. Li, Xinyue & Chen, Shuqin & Li, Hongliang & Lou, Yunxiao & Li, Jiahe, 2023. "A behavior-orientated prediction method for short-term energy consumption of air-conditioning systems in buildings blocks," Energy, Elsevier, vol. 263(PD).
    12. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    13. He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
    14. El-Baz, Wessam & Tzscheutschler, Peter & Wagner, Ulrich, 2019. "Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies," Applied Energy, Elsevier, vol. 241(C), pages 625-639.
    15. Silvia Golia & Luigi Grossi & Matteo Pelagatti, 2022. "Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    16. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    17. Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
    18. Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
    19. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
    20. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7252-:d:1267260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.