IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i11p7322-7334.html
   My bibliography  Save this item

The energy intensity in Lithuania during 1995–2009: A LMDI approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chang, Ming-Chung, 2016. "Applying the energy productivity index that considers maximized energy reduction on SADC (Southern Africa Development Community) members," Energy, Elsevier, vol. 95(C), pages 313-323.
  2. Feng Dong & Ruyin Long & Hong Chen & Xiaohui Li & Qingliang Yang, 2013. "Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
  3. Vicent Alcántara Escolano & Emilio Padilla Rosa & Pablo del Río González, 2020. "The driving factors of CO2 emissions from electricity generation in Spain: A decomposition analysis," Working Papers wpdea2005, Department of Applied Economics at Universitat Autonoma of Barcelona.
  4. Oludolapo A Olanrewaju, 2018. "Energy consumption in South African industry: A decomposition analysis using the LMDI approach," Energy & Environment, , vol. 29(2), pages 232-244, March.
  5. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
  6. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
  7. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
  8. Michael Schymura & Andreas Löschel, 2012. "Trade and the Environment: An Application of the WIOD Database," EcoMod2012 3948, EcoMod.
  9. Hassaballa, Hoda, 2014. "Testing for Granger causality between energy use and foreign direct investment Inflows in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 417-426.
  10. Lin, Boqiang & Xu, Mengmeng, 2019. "Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: A case of China’s metallurgical industry," Energy, Elsevier, vol. 189(C).
  11. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
  12. Streimikiene, Dalia & Baležentis, Tomas, 2013. "Multi-criteria assessment of small scale CHP technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 183-189.
  13. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
  14. Min Lu & Xing Wang & Yuquan Cang, 2018. "Carbon Productivity: Findings from Industry Case Studies in Beijing," Energies, MDPI, vol. 11(10), pages 1-19, October.
  15. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
  16. Collado, Rocío Román & Díaz, María Teresa Sanz, 2017. "Analysis of energy end-use efficiency policy in Spain," Energy Policy, Elsevier, vol. 101(C), pages 436-446.
  17. Timma, Lelde & Zoss, Toms & Blumberga, Dagnija, 2016. "Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia," Applied Energy, Elsevier, vol. 162(C), pages 1586-1592.
  18. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Decomposition and Decoupling Analysis of Factors Affecting Carbon Emissions in China’s Regional Logistics Industry," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
  19. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
  20. Luo, Yulong & Zeng, Weiliang & Wang, Yueqiang & Li, Danzhou & Hu, Xianbiao & Zhang, Hua, 2021. "A hybrid approach for examining the drivers of energy consumption in Shanghai," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  21. Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
  22. Zhiqian Yu & Dalia Streimikiene & Tomas Balezentis & Rimantas Dapkus, 2017. "Final Energy Consumption Trends and Drivers in Czech Republic and Latvia," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(46), pages 866-866, August.
  23. Zbigniew Golas, 2021. "Energy-Related Greenhouse Gas Emissions in Poland from 2000 to 2018: An LMDI Decomposition Analysis Perspective," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 1243-1257.
  24. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "A Relational Analysis Model of the Causal Factors Influencing CO 2 in Thailand’s Industrial Sector under a Sustainability Policy Adapting the VARIMAX-ECM Model," Energies, MDPI, vol. 11(7), pages 1-16, July.
  25. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
  26. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
  27. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
  28. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2014. "Drivers of greenhouse gas emissions in the Baltic States: A structural decomposition analysis," Ecological Economics, Elsevier, vol. 98(C), pages 22-28.
  29. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
  30. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
  31. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
  32. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
  33. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
  34. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
  35. Streimikiene, Dalia & Baležentis, Tomas & Kriščiukaitienė, Irena, 2012. "Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania," Energy Policy, Elsevier, vol. 50(C), pages 699-710.
  36. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
  37. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
  38. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.
  39. Juan Wang & Tao Zhao & Xianshuo Xu & Xiaohu Zhang, 2016. "Exploring the changes of energy-related carbon intensity in China: an extended Divisia index decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 501-521, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.