IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v33y2005i13p1643-1659.html
   My bibliography  Save this item

An exploration of the technical feasibility of achieving CO2 emission reductions in excess of 60% within the UK housing stock by the year 2050

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Barrett, Mark & Lowe, Robert & Oreszczyn, Tadj & Steadman, Philip, 2008. "How to support growth with less energy," Energy Policy, Elsevier, vol. 36(12), pages 4592-4599, December.
  2. Atkinson, Jonathan G.B. & Jackson, Tim & Mullings-Smith, Elizabeth, 2009. "Market influence on the low carbon energy refurbishment of existing multi-residential buildings," Energy Policy, Elsevier, vol. 37(7), pages 2582-2593, July.
  3. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
  4. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
  5. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
  6. Reeves, Andrew & Taylor, Simon & Fleming, Paul, 2010. "Modelling the potential to achieve deep carbon emission cuts in existing UK social housing: The case of Peabody," Energy Policy, Elsevier, vol. 38(8), pages 4241-4251, August.
  7. Allen, S.R. & Hammond, G.P., 2010. "Thermodynamic and carbon analyses of micro-generators for UK households," Energy, Elsevier, vol. 35(5), pages 2223-2234.
  8. Xing Zhao & Xin Zhang, 2022. "Research on the Evaluation and Regional Differences in Carbon Emissions Efficiency of Cultural and Related Manufacturing Industries in China’s Yangtze River Basin," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
  9. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
  10. Johansson, P. & Nylander, A. & Johnsson, F., 2006. "Electricity dependency and CO2 emissions from heating in the Swedish building sector--Current trends in conflict with governmental policy?," Energy Policy, Elsevier, vol. 34(17), pages 3049-3064, November.
  11. Urge-Vorsatz, Diana & Novikova, Aleksandra, 2008. "Potentials and costs of carbon dioxide mitigation in the world's buildings," Energy Policy, Elsevier, vol. 36(2), pages 642-661, February.
  12. Power, Anne, 2008. "Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability?," Energy Policy, Elsevier, vol. 36(12), pages 4487-4501, December.
  13. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.
  14. Hughes, Nick & Strachan, Neil & Gross, Robert, 2013. "The structure of uncertainty in future low carbon pathways," Energy Policy, Elsevier, vol. 52(C), pages 45-54.
  15. Natarajan, Sukumar & Levermore, Geoffrey J., 2007. "Domestic futures--Which way to a low-carbon housing stock?," Energy Policy, Elsevier, vol. 35(11), pages 5728-5736, November.
  16. Siller, Thomas & Kost, Michael & Imboden, Dieter, 2007. "Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector," Energy Policy, Elsevier, vol. 35(1), pages 529-539, January.
  17. Shimada, Koji & Tanaka, Yoshitaka & Gomi, Kei & Matsuoka, Yuzuru, 2007. "Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan," Energy Policy, Elsevier, vol. 35(9), pages 4688-4703, September.
  18. Natarajan, Sukumar & Levermore, Geoffrey J., 2007. "Predicting future UK housing stock and carbon emissions," Energy Policy, Elsevier, vol. 35(11), pages 5719-5727, November.
  19. Amstalden, Roger W. & Kost, Michael & Nathani, Carsten & Imboden, Dieter M., 2007. "Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations," Energy Policy, Elsevier, vol. 35(3), pages 1819-1829, March.
  20. Killip, Gavin, 2013. "Products, practices and processes: exploring the innovation potential for low-carbon housing refurbishment among small and medium-sized enterprises (SMEs) in the UK construction industry," Energy Policy, Elsevier, vol. 62(C), pages 522-530.
  21. Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
  22. Kwon Sook Park & Mi Jeong Kim, 2017. "Energy Demand Reduction in the Residential Building Sector: A Case Study of Korea," Energies, MDPI, vol. 10(10), pages 1-11, September.
  23. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
  24. Bischof, Julian & Duffy, Aidan, 2022. "Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  25. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
  26. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
  27. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
  28. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
  29. Huakun Huang & Dingrong Dai & Longtao Guo & Sihui Xue & Huijun Wu, 2023. "AI and Big Data-Empowered Low-Carbon Buildings: Challenges and Prospects," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
  30. Odenberger, M. & Johnsson, F., 2007. "Achieving 60% CO2 reductions within the UK energy system--Implications for the electricity generation sector," Energy Policy, Elsevier, vol. 35(4), pages 2433-2452, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.