IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp828-846.html
   My bibliography  Save this article

Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort

Author

Listed:
  • Dino, Ipek Gürsel
  • Meral Akgül, Cagla

Abstract

With the growing need for residential buildings as a result of population growth, the building sector is a high-priority area in climate change due to its large share of CO2 emissions, the significant energy saving opportunities it represents, and the increasing expectations for occupant comfort. This paper presents the results of climate change impact assessment on a typical mid-rise residential building in four representative cities with different climatic characteristics in Turkey. Three different scenarios that characterize different solutions towards space cooling are developed, from naturally ventilated to fully air-conditioned. The energy requirements and corresponding CO2 emissions due to space conditioning as well as occupant thermal comfort are the investigated building performance metrics. The preliminary results based on energy simulations indicate that pronounced overheating will be experienced in the future, which will have a strong effect on cooling energy use and/or occupant comfort. The projected energy demand also points to the future need to explore measures for climate change adaptation of buildings and the importance of the decarbonization of the electricity industry for climate change mitigation. The analysis results presented in this paper provide a basis for future studies on building retrofit for climate change.

Suggested Citation

  • Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
  • Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:828-846
    DOI: 10.1016/j.renene.2019.03.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patidar, Sandhya & Jenkins, David & Banfill, Phil & Gibson, Gavin, 2014. "Simple statistical model for complex probabilistic climate projections: Overheating risk and extreme events," Renewable Energy, Elsevier, vol. 61(C), pages 23-28.
    2. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    3. Xu, Peng & Huang, Yu Joe & Miller, Norman & Schlegel, Nicole & Shen, Pengyuan, 2012. "Impacts of climate change on building heating and cooling energy patterns in California," Energy, Elsevier, vol. 44(1), pages 792-804.
    4. Atilgan, Burcin & Azapagic, Adisa, 2016. "An integrated life cycle sustainability assessment of electricity generation in Turkey," Energy Policy, Elsevier, vol. 93(C), pages 168-186.
    5. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    6. Johnston, D. & Lowe, R. & Bell, M., 2005. "An exploration of the technical feasibility of achieving CO2 emission reductions in excess of 60% within the UK housing stock by the year 2050," Energy Policy, Elsevier, vol. 33(13), pages 1643-1659, September.
    7. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    8. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    9. Santoyo-Castelazo, E. & Gujba, H. & Azapagic, A., 2011. "Life cycle assessment of electricity generation in Mexico," Energy, Elsevier, vol. 36(3), pages 1488-1499.
    10. Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2010. "A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions," Applied Energy, Elsevier, vol. 87(2), pages 599-607, February.
    11. Burcin Atilgan & Adisa Azapagic, 2016. "Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis," Energies, MDPI, vol. 9(1), pages 1-24, January.
    12. Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
    13. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Naga Venkata Sai Kumar Manapragada & Anoop Kumar Shukla & Gloria Pignatta & Komali Yenneti & Deepika Shetty & Bibhu Kalyan Nayak & Venkataramana Boorla, 2022. "Development of the Indian Future Weather File Generator Based on Representative Concentration Pathways," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    3. Rui Cao & Yanling Xiao & Fengxue Yin, 2023. "Spatio-Temporal Evolution of High-Quality Development and the Impact of Carbon Emissions Trading Schemes," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    4. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    5. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    6. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Vargas-Salgado, Carlos, 2021. "Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations," Renewable Energy, Elsevier, vol. 179(C), pages 737-755.
    7. Haratoka, Cagatay & Yalcin, Refet A. & Erturk, Hakan, 2023. "Examination of energy and visual comfort performance of thermo-chromic coatings for cellular offices," Energy, Elsevier, vol. 267(C).
    8. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Acaroğlu, Hakan & Güllü, Mustafa, 2022. "Climate change caused by renewable and non-renewable energy consumption and economic growth: A time series ARDL analysis for Turkey," Renewable Energy, Elsevier, vol. 193(C), pages 434-447.
    10. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    11. Nihal Ahmed & Franklin Ore Areche & Guillermo Gomer Cotrina Cabello & Pedro David Córdova Trujillo & Adnan Ahmed Sheikh & Mohamad G. Abiad, 2022. "Intensifying Effects of Climate Change in Food Loss: A Threat to Food Security in Turkey," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    12. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    13. Salameh, Tareq & Alkhalidi, Ammar & Hussien Rabaia, Malek Kamal & Al Swailmeen, Yaser & Alroujmah, Wared & Ibrahim, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimization and life cycle analysis of solar-powered absorption chiller designed for a small house in the United Arab Emirates using evacuated tube technology," Renewable Energy, Elsevier, vol. 198(C), pages 200-212.
    14. Weixin Yang & Hao Gao & Yunpeng Yang & Jiacheng Liao, 2022. "Embodied Carbon in China’s Export Trade: A Multi Region Input-Output Analysis," IJERPH, MDPI, vol. 19(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    2. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    4. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    5. António A. Martins & Marta Simaria & Joaquim Barbosa & Ricardo Barbosa & Daniela T. Silva & Cristina S. Rocha & Teresa M. Mata & Nídia S. Caetano, 2018. "Life cycle assessment tool of electricity generation in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 129-143, December.
    6. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    7. Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
    8. Burleyson, Casey D. & Voisin, Nathalie & Taylor, Z. Todd & Xie, Yulong & Kraucunas, Ian, 2018. "Simulated building energy demand biases resulting from the use of representative weather stations," Applied Energy, Elsevier, vol. 209(C), pages 516-528.
    9. Markéta Šerešová & Jiří Štefanica & Monika Vitvarová & Kristina Zakuciová & Petr Wolf & Vladimír Kočí, 2020. "Life Cycle Performance of Various Energy Sources Used in the Czech Republic," Energies, MDPI, vol. 13(21), pages 1-17, November.
    10. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    12. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    13. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    14. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    15. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    16. Rebeka Kovačič Lukman & Vasja Omahne & Damjan Krajnc, 2021. "Sustainability Assessment with Integrated Circular Economy Principles: A Toy Case Study," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    17. Kwok Wai Mui & Ling Tim Wong & Manoj Kumar Satheesan & Anjana Balachandran, 2021. "A Hybrid Simulation Model to Predict the Cooling Energy Consumption for Residential Housing in Hong Kong," Energies, MDPI, vol. 14(16), pages 1-18, August.
    18. Gabriela Shirkey & Megan Belongeay & Susie Wu & Xiaoguang Ma & Hassan Tavakol & Annick Anctil & Sandra Marquette-Pyatt & Rodney A. Stewart & Parikith Sinha & Richard Corkish & Jiquan Chen & Ilke Celik, 2021. "An Environmental and Societal Analysis of the US Electrical Energy Industry Based on the Water–Energy Nexus," Energies, MDPI, vol. 14(9), pages 1-20, May.
    19. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    20. Daniel González-Prieto & Yolanda Fernández-Nava & Elena Marañón & Maria Manuela Prieto, 2020. "Effect of Decarbonisation Policies and Climate Change on Environmental Impacts due to Heating and Cooling in a Single-Family House," Sustainability, MDPI, vol. 12(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:828-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.