IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v80y2019icp937-949.html
   My bibliography  Save this item

Using machine learning tools for forecasting natural gas consumption in the province of Istanbul

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Zheng & Zhou, Bo & Hensher, David A., 2022. "Forecasting automobile gasoline demand in Australia using machine learning-based regression," Energy, Elsevier, vol. 239(PD).
  2. Pala, Zeydin, 2023. "Comparative study on monthly natural gas vehicle fuel consumption and industrial consumption using multi-hybrid forecast models," Energy, Elsevier, vol. 263(PC).
  3. Zhou, Huimin & Dang, Yaoguo & Yang, Yingjie & Wang, Junjie & Yang, Shaowen, 2023. "An optimized nonlinear time-varying grey Bernoulli model and its application in forecasting the stock and sales of electric vehicles," Energy, Elsevier, vol. 263(PC).
  4. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
  5. Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).
  6. Xu, Guangyue & Chen, Yaqiang & Yang, Mengge & Li, Shuang & Marma, Kyaw Jaw Sine, 2023. "An outlook analysis on China's natural gas consumption forecast by 2035: Applying a seasonal forecasting method," Energy, Elsevier, vol. 284(C).
  7. Li, Jiaman & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin & Liu, Guixian, 2021. "Natural gas trade network of countries and regions along the belt and road: Where to go in the future?," Resources Policy, Elsevier, vol. 71(C).
  8. Haoran Zhao & Sen Guo, 2021. "Uncertain Interval Forecasting for Combined Electricity-Heat-Cooling-Gas Loads in the Integrated Energy System Based on Multi-Task Learning and Multi-Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 9(14), pages 1-32, July.
  9. Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
  10. SeyedAli Ghahari & Cesar Queiroz & Samuel Labi & Sue McNeil, 2021. "Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)—An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
  11. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
  12. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
  13. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
  14. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Lu, Xinyi & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Shahzad, Khurram & Rashid, Muhammad Imtiaz & Ali, Arshid Mahmood & Liao, Qi & Wang, Bohong, 2022. "A hybrid deep learning framework for predicting daily natural gas consumption," Energy, Elsevier, vol. 257(C).
  15. Tomasz Cieślik & Piotr Narloch & Adam Szurlej & Krzysztof Kogut, 2022. "Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland," Energies, MDPI, vol. 15(4), pages 1-18, February.
  16. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
  17. Longfeng Zhang & Xin Ma & Hui Zhang & Gaoxun Zhang & Peng Zhang, 2022. "Multi-Step Ahead Natural Gas Consumption Forecasting Based on a Hybrid Model: Case Studies in The Netherlands and the United Kingdom," Energies, MDPI, vol. 15(19), pages 1-26, October.
  18. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
  19. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
  20. Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.
  21. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
  22. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
  23. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
  24. Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
  25. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
  26. K, Ashin Nishan M & ASHIQ, MUHAMMED V, 2019. "Role of Energy use in the Prediction of CO2 Emissions and Growth in India: An Application of Artificial Neural Networks (ANN)," SocArXiv gkpbu, Center for Open Science.
  27. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
  28. Zhang, Xiaokong & Chai, Jian & Tian, Lingyue & Yang, Ying & Zhang, Zhe George & Pan, Yue, 2023. "Forecast and structural characteristics of China's oil product consumption embedded in bottom-line thinking," Energy, Elsevier, vol. 278(PA).
  29. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
  30. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
  31. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.
  32. Svoboda, Radek & Kotik, Vojtech & Platos, Jan, 2021. "Short-term natural gas consumption forecasting from long-term data collection," Energy, Elsevier, vol. 218(C).
  33. Xin Guan & Xiangyi Lu & Yang Wen, 2022. "Is China’s Natural Gas Consumption Converging? Empirical Research Based on Spatial Econometrics," Energies, MDPI, vol. 15(24), pages 1-13, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.