IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v98y2012icp574-583.html
   My bibliography  Save this item

Monitoring of wind farms’ power curves using machine learning techniques

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Maurizio Volpe & Carmelo D'Anna & Simona Messineo & Roberto Volpe & Antonio Messineo, 2014. "Sustainable Production of Bio-Combustibles from Pyrolysis of Agro-Industrial Wastes," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
  2. Tugce Demirdelen & Pırıl Tekin & Inayet Ozge Aksu & Firat Ekinci, 2019. "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
  3. Astolfi, Davide & Castellani, Francesco & Garinei, Alberto & Terzi, Ludovico, 2015. "Data mining techniques for performance analysis of onshore wind farms," Applied Energy, Elsevier, vol. 148(C), pages 220-233.
  4. Díaz, Santiago & Carta, José A. & Castañeda, Alberto, 2020. "Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control," Renewable Energy, Elsevier, vol. 159(C), pages 812-826.
  5. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
  6. Seo, Seokho & Oh, Si-Doek & Kwak, Ho-Young, 2019. "Wind turbine power curve modeling using maximum likelihood estimation method," Renewable Energy, Elsevier, vol. 136(C), pages 1164-1169.
  7. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
  8. Chen, Yuntian & Jiang, Su & Zhang, Dongxiao & Liu, Chaoyang, 2017. "An adsorbed gas estimation model for shale gas reservoirs via statistical learning," Applied Energy, Elsevier, vol. 197(C), pages 327-341.
  9. Sasser, Christiana & Yu, Meilin & Delgado, Ruben, 2022. "Improvement of wind power prediction from meteorological characterization with machine learning models," Renewable Energy, Elsevier, vol. 183(C), pages 491-501.
  10. Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
  11. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
  12. Badihi, Hamed & Zhang, Youmin & Hong, Henry, 2017. "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches," Applied Energy, Elsevier, vol. 201(C), pages 284-307.
  13. Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  14. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  15. Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
  16. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
  17. Marvuglia, Antonino & Havinga, Lisanne & Heidrich, Oliver & Fonseca, Jimeno & Gaitani, Niki & Reckien, Diana, 2020. "Advances and challenges in assessing urban sustainability: an advanced bibliometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  18. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
  19. Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2021. "Fault-Tolerant Cooperative Control of Large-Scale Wind Farms and Wind Farm Clusters," Energies, MDPI, vol. 14(21), pages 1-29, November.
  20. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
  21. Rashmi P. Shetty & A. Sathyabhama & Srinivasa Pai P., 2019. "Efficient Modelling and Simulation Of Wind Power Using Online Sequential Learning Algorithm For Feed Forward Networks," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 109-115, March.
  22. Wenna Zhang & Xiandong Ma, 2016. "Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines," Energies, MDPI, vol. 9(4), pages 1-15, April.
  23. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "Issues with Data Quality for Wind Turbine Condition Monitoring and Reliability Analyses," Energies, MDPI, vol. 12(2), pages 1-22, January.
  24. Chen, Hao, 2022. "Cluster-based ensemble learning for wind power modeling from meteorological wind data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  25. Marino Marrocu & Luca Massidda, 2017. "A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast," Energies, MDPI, vol. 10(12), pages 1-14, November.
  26. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
  27. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
  28. Yang, Hsu-Hao & Huang, Mei-Ling & Lai, Chun-Mei & Jin, Jhih-Rong, 2018. "An approach combining data mining and control charts-based model for fault detection in wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 808-816.
  29. Bertašienė, Agnė & Azzopardi, Brian, 2015. "Synergies of Wind Turbine control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 336-342.
  30. Meyer, Angela, 2021. "Multi-target normal behaviour models for wind farm condition monitoring," Applied Energy, Elsevier, vol. 300(C).
  31. Pere Marti-Puig & Alejandro Blanco-M & Juan José Cárdenas & Jordi Cusidó & Jordi Solé-Casals, 2019. "Feature Selection Algorithms for Wind Turbine Failure Prediction," Energies, MDPI, vol. 12(3), pages 1-18, January.
  32. Long, Huan & Zhang, Zijun & Su, Yan, 2014. "Analysis of daily solar power prediction with data-driven approaches," Applied Energy, Elsevier, vol. 126(C), pages 29-37.
  33. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
  34. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
  35. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
  36. Hsu-Hao Yang & Mei-Ling Huang & Shih-Wei Yang, 2015. "Integrating Auto-Associative Neural Networks with Hotelling T 2 Control Charts for Wind Turbine Fault Detection," Energies, MDPI, vol. 8(10), pages 1-16, October.
  37. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
  38. Sergio Velázquez Medina & José A. Carta & Ulises Portero Ajenjo, 2019. "Performance Sensitivity of a Wind Farm Power Curve Model to Different Signals of the Input Layer of ANNs: Case Studies in the Canary Islands," Complexity, Hindawi, vol. 2019, pages 1-11, March.
  39. Antonio Messineo & Gabriele Freni & Roberto Volpe, 2012. "Collection of Thermal Energy Available from a Biogas Plant for Leachate Treatment in an Urban Landfill: A Sicilian Case Study," Energies, MDPI, vol. 5(10), pages 1-15, September.
  40. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
  41. Riccardo Squatrito & Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa, 2014. "Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies," Energies, MDPI, vol. 7(11), pages 1-19, November.
  42. Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
  43. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
  44. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
  45. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
  46. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
  47. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
  48. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
  49. Yang, Mao & Shi, Chaoyu & Liu, Huiyu, 2021. "Day-ahead wind power forecasting based on the clustering of equivalent power curves," Energy, Elsevier, vol. 218(C).
  50. Mingzhu Tang & Qi Zhao & Steven X. Ding & Huawei Wu & Linlin Li & Wen Long & Bin Huang, 2020. "An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes," Energies, MDPI, vol. 13(4), pages 1-16, February.
  51. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
  52. Jin, Yuqing & Ju, Ping & Rehtanz, Christian & Wu, Feng & Pan, Xueping, 2018. "Equivalent modeling of wind energy conversion considering overall effect of pitch angle controllers in wind farm," Applied Energy, Elsevier, vol. 222(C), pages 485-496.
  53. Yu, Ruiguo & Liu, Zhiqiang & Li, Xuewei & Lu, Wenhuan & Ma, Degang & Yu, Mei & Wang, Jianrong & Li, Bin, 2019. "Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space," Applied Energy, Elsevier, vol. 238(C), pages 249-257.
  54. Montaser Abdelsattar & Mohamed A. Ismeil & Karim Menoufi & Ahmed AbdelMoety & Ahmed Emad-Eldeen, 2025. "Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-31, January.
  55. Castellani, Francesco & Astolfi, Davide & Sdringola, Paolo & Proietti, Stefania & Terzi, Ludovico, 2017. "Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment," Applied Energy, Elsevier, vol. 185(P2), pages 1076-1086.
  56. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
  57. Nasery, Praanjal & Aziz Ezzat, Ahmed, 2023. "Yaw-adjusted wind power curve modeling: A local regression approach," Renewable Energy, Elsevier, vol. 202(C), pages 1368-1376.
  58. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
  59. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
  60. Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
  61. Cui, Bodi & Weng, Yang & Zhang, Ning, 2022. "A feature extraction and machine learning framework for bearing fault diagnosis," Renewable Energy, Elsevier, vol. 191(C), pages 987-997.
  62. Mario Collotta & Antonio Messineo & Giuseppina Nicolosi & Giovanni Pau, 2014. "A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input," Energies, MDPI, vol. 7(8), pages 1-30, July.
  63. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2020. "Wind turbine power curve modeling for reliable power prediction using monotonic regression," Renewable Energy, Elsevier, vol. 147(P1), pages 214-222.
  64. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.