IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7436-d674615.html
   My bibliography  Save this article

Fault-Tolerant Cooperative Control of Large-Scale Wind Farms and Wind Farm Clusters

Author

Listed:
  • Saeedreza Jadidi

    (Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Hamed Badihi

    (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China)

  • Youmin Zhang

    (Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

Abstract

Large-scale wind farms and wind farm clusters with many installed wind turbines are increasingly built around the world, and especially in offshore regions. The reliability and availability of these assets are critically important for cost-effective wind power generation. This requires effective solutions for online fault detection, diagnosis and fault accommodation to improve the overall reliability and availability of wind turbines and entire wind farms. To meet this requirement, this paper proposes a novel active fault-tolerant cooperative control (FTCC) scheme for large-scale wind farms and wind farm clusters (WFCs). The proposed scheme is based on a signal correction method at wind turbine level that is augmented with two innovative “control reallocation” mechanisms at wind farm and network operator levels. Applied to a WFC, this scheme detects, identifies and accommodates the effects of both mild and severe power-loss faults in wind turbines. Various simulation studies on an advanced WFC benchmark indicate the high efficiency and effectiveness of the proposed solutions.

Suggested Citation

  • Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2021. "Fault-Tolerant Cooperative Control of Large-Scale Wind Farms and Wind Farm Clusters," Energies, MDPI, vol. 14(21), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7436-:d:674615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mazare, Mahmood & Taghizadeh, Mostafa & Ghaf-Ghanbari, Pegah, 2021. "Fault tolerant control of wind turbines with simultaneous actuator and sensor faults using adaptive time delay control," Renewable Energy, Elsevier, vol. 174(C), pages 86-101.
    2. Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2020. "Passive Fault-Tolerant Control Strategies for Power Converter in a Hybrid Microgrid," Energies, MDPI, vol. 13(21), pages 1-28, October.
    3. Badihi, Hamed & Zhang, Youmin & Hong, Henry, 2017. "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches," Applied Energy, Elsevier, vol. 201(C), pages 284-307.
    4. Afef Fekih & Saleh Mobayen & Chih-Chiang Chen, 2021. "Adaptive Robust Fault-Tolerant Control Design for Wind Turbines Subject to Pitch Actuator Faults," Energies, MDPI, vol. 14(6), pages 1-13, March.
    5. Seyed Mojtaba Tabatabaeipour & Peter F. Odgaard & Thomas Bak & Jakob Stoustrup, 2012. "Fault Detection of Wind Turbines with Uncertain Parameters: A Set-Membership Approach," Energies, MDPI, vol. 5(7), pages 1-25, July.
    6. Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
    7. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    8. Kuichao Ma & Mohsen Soltani & Amin Hajizadeh & Jiangsheng Zhu & Zhe Chen, 2021. "Wind Farm Power Optimization and Fault Ride-Through under Inter-Turn Short-Circuit Fault," Energies, MDPI, vol. 14(11), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peizhao Hong & Zhijun Qin, 2022. "Distributed Active Power Optimal Dispatching of Wind Farm Cluster Considering Wind Power Uncertainty," Energies, MDPI, vol. 15(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    2. Badihi, Hamed & Zhang, Youmin & Hong, Henry, 2017. "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches," Applied Energy, Elsevier, vol. 201(C), pages 284-307.
    3. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
    4. Qiang Zhao & Kunkun Bao & Jia Wang & Yinghua Han & Jinkuan Wang, 2019. "An Online Hybrid Model for Temperature Prediction of Wind Turbine Gearbox Components," Energies, MDPI, vol. 12(20), pages 1-20, October.
    5. Afef Fekih & Hamed Habibi & Silvio Simani, 2022. "Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview," Energies, MDPI, vol. 15(19), pages 1-21, September.
    6. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
    7. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    8. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    9. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    10. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    11. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
    12. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    13. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    14. Jordi Cusidó & Arnau López & Mattia Beretta, 2021. "Fault-Tolerant Control of a Wind Turbine Generator Based on Fuzzy Logic and Using Ensemble Learning," Energies, MDPI, vol. 14(16), pages 1-20, August.
    15. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Mpho Sam Nkambule & Ali N. Hasan & Ahmed Ali & Thokozani Shongwe, 2022. "A Novel Control Strategy in Grid-Integrated Photovoltaic System for Power Quality Enhancement," Energies, MDPI, vol. 15(15), pages 1-31, August.
    17. Wenna Zhang & Xiandong Ma, 2016. "Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines," Energies, MDPI, vol. 9(4), pages 1-15, April.
    18. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    19. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    20. Yashar Mousavi & Geraint Bevan & Ibrahim Beklan Küçükdemiral & Afef Fekih, 2021. "Maximum Power Extraction from Wind Turbines Using a Fault-Tolerant Fractional-Order Nonsingular Terminal Sliding Mode Controller," Energies, MDPI, vol. 14(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7436-:d:674615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.