Author
Listed:
- Montaser Abdelsattar
- Mohamed A. Ismeil
- Karim Menoufi
- Ahmed AbdelMoety
- Ahmed Emad-Eldeen
Abstract
This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). ET achieved the highest performance among ML models, with an R-squared value of 0.7231 and a RMSE of 0.1512. Among DL models, ANN demonstrated the best performance, achieving an R-squared value of 0.7248 and a RMSE of 0.1516. The results show that DL models, especially ANN, did slightly better than the best ML models. This means that they are better at modeling non-linear dependencies in multivariate data. Preprocessing techniques, including feature scaling and parameter tuning, improved model performance by enhancing data consistency and optimizing hyperparameters. When compared to previous benchmarks, the performance of both ANN and ET demonstrates significant predictive accuracy gains in WT power output forecasting. This study’s novelty lies in directly comparing a diverse range of ML and DL algorithms while highlighting the potential of advanced computational approaches for renewable energy optimization.
Suggested Citation
Montaser Abdelsattar & Mohamed A. Ismeil & Karim Menoufi & Ahmed AbdelMoety & Ahmed Emad-Eldeen, 2025.
"Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-31, January.
Handle:
RePEc:plo:pone00:0317619
DOI: 10.1371/journal.pone.0317619
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317619. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.