IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v212y2018icp1178-1190.html
   My bibliography  Save this item

A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xu, Qing & Wang, Xiaoyang & Ye, Hong & Gong, Lili & Tan, Peng & Pan, Tingrui, 2025. "An accurate state of health estimation method for lithium-ion batteries based on expansion force analysis," Energy, Elsevier, vol. 325(C).
  2. Runzhe Shan & Yaxuan Wang & Shilong Guo & Yue Cui & Lei Zhao & Junfu Li & Zhenbo Wang, 2025. "From Empirical Measurements to AI Fusion—A Holistic Review of SOH Estimation Techniques for Lithium-Ion Batteries in Electric and Hybrid Vehicles," Energies, MDPI, vol. 18(13), pages 1-42, July.
  3. Lin, Chunsong & Tuo, Xianguo & Wu, Longxing & Zhang, Guiyu & Lyu, Zhiqiang & Zeng, Xiangling, 2025. "Physics-informed machine learning for accurate SOH estimation of lithium-ion batteries considering various temperatures and operating conditions," Energy, Elsevier, vol. 318(C).
  4. Feng, Juqiang & Cai, Feng & Zhao, Yang & Zhang, Xing & Zhan, Xinju & Wang, Shunli, 2024. "A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries," Energy, Elsevier, vol. 299(C).
  5. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
  6. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
  7. Jianyu Zhang & Kang Li, 2024. "State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review," Energies, MDPI, vol. 17(22), pages 1-16, November.
  8. Wang, Limei & Jin, Mengjie & Cai, Yingfeng & Lian, Yubo & Zhao, Xiuliang & Wang, Ruochen & Qiao, Sibing & Chen, Long & Yan, Xueqing, 2023. "Construction of electrochemical model for high C-rate conditions in lithium-ion battery based on experimental analogy method," Energy, Elsevier, vol. 279(C).
  9. Li, Alan G. & Wang, Weizhong & West, Alan C. & Preindl, Matthias, 2022. "Health and performance diagnostics in Li-ion batteries with pulse-injection-aided machine learning," Applied Energy, Elsevier, vol. 315(C).
  10. Zuo, Hongyan & Liang, Jingwei & Zhang, Bin & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2023. "Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction," Energy, Elsevier, vol. 282(C).
  11. Sun, Rongli & Chen, Junsheng & Li, Benchuan & Piao, Changhao, 2025. "State of health estimation for Lithium-ion batteries based on novel feature extraction and BiGRU-Attention model," Energy, Elsevier, vol. 319(C).
  12. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
  13. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.
  14. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
  15. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
  16. Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  17. Li, Yang & Gao, Guoqiang & Chen, Kui & He, Shuhang & Liu, Kai & Xin, Dongli & Luo, Yang & Long, Zhou & Wu, Guangning, 2025. "State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model," Energy, Elsevier, vol. 319(C).
  18. Zhengyu Liu & Jingjie Zhao & Hao Wang & Chao Yang, 2020. "A New Lithium-Ion Battery SOH Estimation Method Based on an Indirect Enhanced Health Indicator and Support Vector Regression in PHMs," Energies, MDPI, vol. 13(4), pages 1-17, February.
  19. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
  20. Shuqing Li & Chuankun Ju & Jianliang Li & Ri Fang & Zhifei Tao & Bo Li & Tingting Zhang, 2021. "State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network," Energies, MDPI, vol. 14(2), pages 1-21, January.
  21. Ashikur Rahman & Xianke Lin & Chongming Wang, 2022. "Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer," Energies, MDPI, vol. 15(15), pages 1-19, August.
  22. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
  23. Ke, Xue & Wang, Lei & Wang, Jun & Wang, Anyang & Wang, Ruilin & Liu, Peng & Li, Li & Han, Rong & Yin, Yiheng & Wang, Feng Ryan & Kuai, Chunguang & Guo, Yuzheng, 2025. "Battery intelligent temperature warning model with physically-informed attention residual networks," Applied Energy, Elsevier, vol. 388(C).
  24. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
  25. Sonthalia, Ankit & Femilda Josephin, J.S. & Varuvel, Edwin Geo & Chinnathambi, Arunachalam & Subramanian, Thiyagarajan & Kiani, Farzad, 2025. "A deep learning multi-feature based fusion model for predicting the state of health of lithium-ion batteries," Energy, Elsevier, vol. 317(C).
  26. Tu, Hao & Moura, Scott & Wang, Yebin & Fang, Huazhen, 2023. "Integrating physics-based modeling with machine learning for lithium-ion batteries," Applied Energy, Elsevier, vol. 329(C).
  27. Kaizhi Liang & Zhaosheng Zhang & Peng Liu & Zhenpo Wang & Shangfeng Jiang, 2019. "Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-17, December.
  28. Xie, Yanmin & Xu, Jun & Jin, Chengwei & Jia, Zhenyu & Mei, Xuesong, 2024. "A novel reduced-order electrochemical model of lithium-ion batteries with both high fidelity and real-time applicability," Energy, Elsevier, vol. 306(C).
  29. Li, Xining & Ju, Lingling & Geng, Guangchao & Jiang, Quanyuan, 2023. "Data-driven state-of-health estimation for lithium-ion battery based on aging features," Energy, Elsevier, vol. 274(C).
  30. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
  31. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  32. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
  33. Román-Ramírez, L.A. & Marco, J., 2022. "Design of experiments applied to lithium-ion batteries: A literature review," Applied Energy, Elsevier, vol. 320(C).
  34. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  35. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
  36. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
  37. Lopez-Salazar, Camilo & Ekwaro-Osire, Stephen & Dabetwar, Shweta & Alemayehu, Fisseha, 2025. "A comprehensive framework for estimating the remaining useful life of Li-ion batteries under limited data conditions with no temporal identifier," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  38. Han, Xiaojuan & Wang, Zuran & Wei, Zixuan, 2021. "A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion," Applied Energy, Elsevier, vol. 302(C).
  39. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
  40. Ji, Guansong & He, Lianfang & Wu, Tianyuan & Cui, Guanglei, 2025. "The design of fast charging strategy for lithium-ion batteries and intelligent application: A comprehensive review," Applied Energy, Elsevier, vol. 377(PC).
  41. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
  42. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
  43. Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
  44. Omid Rahbari & Noshin Omar & Joeri Van Mierlo & Marc A. Rosen & Thierry Coosemans & Maitane Berecibar, 2019. "Electric Vehicle Battery Lifetime Extension through an Intelligent Double-Layer Control Scheme," Energies, MDPI, vol. 12(8), pages 1-24, April.
  45. Lin, Mingqiang & Wu, Denggao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "Health prognosis for lithium-ion battery with multi-feature optimization," Energy, Elsevier, vol. 264(C).
  46. Ma’d El-Dalahmeh & Maher Al-Greer & Mo’ath El-Dalahmeh & Michael Short, 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 13(20), pages 1-19, October.
  47. Zhang, Wencan & He, Hancheng & Li, Taotao & Yuan, Jiangfeng & Xie, Yi & Long, Zhuoru, 2024. "Lithium-ion battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data," Energy, Elsevier, vol. 296(C).
  48. Kejun Qian & Yafei Li & Qiheng Zou & Kecai Cao & Zhongpeng Li, 2025. "SOH and RUL Estimation for Lithium-Ion Batteries Based on Partial Charging Curve Features," Energies, MDPI, vol. 18(13), pages 1-19, June.
  49. Adrian Chmielewski & Piotr Piórkowski & Krzysztof Bogdziński & Paweł Krawczyk & Jakub Lorencki & Artur Kopczyński & Jakub Możaryn & Ramon Costa-Castelló & Stepan Ozana, 2025. "A Double Resistive–Capacitive Approach for the Analysis of a Hybrid Battery–Ultracapacitor Integration Study," Energies, MDPI, vol. 18(2), pages 1-24, January.
  50. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo & Xie, Jiale, 2022. "A data-fusion framework for lithium battery health condition Estimation Based on differential thermal voltammetry," Energy, Elsevier, vol. 239(PC).
  51. Hongya Zhang & Hao Chen & Haisheng Fang, 2022. "Cooling Optimization Strategy for a 6s4p Lithium-Ion Battery Pack Based on Triple-Step Nonlinear Method," Energies, MDPI, vol. 16(1), pages 1-31, December.
  52. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
  53. Miaomiao Zeng & Peng Zhang & Yang Yang & Changjun Xie & Ying Shi, 2019. "SOC and SOH Joint Estimation of the Power Batteries Based on Fuzzy Unscented Kalman Filtering Algorithm," Energies, MDPI, vol. 12(16), pages 1-15, August.
  54. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
  55. Song, Yuchen & Liu, Datong & Liao, Haitao & Peng, Yu, 2020. "A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 261(C).
  56. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
  57. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
  58. Tang, Aihua & Wu, Xinyu & Xu, Tingting & Hu, Yuanzhi & Long, Shengwen & Yu, Quanqing, 2024. "State of health estimation based on inconsistent evolution for lithium-ion battery module," Energy, Elsevier, vol. 286(C).
  59. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
  60. Zhou, Yifei & Wang, Shunli & Xie, Yanxing & Shen, Xianfeng & Fernandez, Carlos, 2023. "Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm," Energy, Elsevier, vol. 285(C).
  61. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
  62. Xiong, Ran & Wang, Shunli & Huang, Qi & Yu, Chunmei & Fernandez, Carlos & Xiao, Wei & Jia, Jun & Guerrero, Josep M., 2024. "Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy stor," Energy, Elsevier, vol. 292(C).
  63. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
  64. Zhang, Jiarui & Wang, Chao & Li, Jinzhong & Xie, Yuguang & Mao, Lei & Hu, Zhiyong, 2023. "A Bayesian method for capacity degradation prediction of lithium-ion battery considering both within and cross group heterogeneity," Applied Energy, Elsevier, vol. 351(C).
  65. Stefano Leonori & Luca Baldini & Antonello Rizzi & Fabio Massimo Frattale Mascioli, 2021. "A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells," Energies, MDPI, vol. 14(21), pages 1-29, November.
  66. Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).
  67. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
  68. Andrzej P. Nowak & Paweł Rutecki & Mariusz Szkoda & Konrad Trzciński, 2024. "Determination of Sodium Ion Diffusion Coefficient in Tin Sulfide@Carbon Anode Material Using GITT and EIS Techniques," Energies, MDPI, vol. 17(13), pages 1-11, July.
  69. Wang, Tong & Wu, Yan & Zhu, Keming & Cen, Jianmeng & Wang, Shaohong & Huang, Yuqi, 2025. "Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data," Energy, Elsevier, vol. 317(C).
  70. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
  71. Li, Xiaoyu & Lyu, Mohan & Li, Kuo & Gao, Xiao & Liu, Caixia & Zhang, Zhaosheng, 2023. "Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning," Energy, Elsevier, vol. 282(C).
  72. Biju, Nikhil & Fang, Huazhen, 2023. "BattX: An equivalent circuit model for lithium-ion batteries over broad current ranges," Applied Energy, Elsevier, vol. 339(C).
  73. Adrian Chmielewski & Piotr Piórkowski & Krzysztof Bogdziński & Jakub Możaryn, 2023. "Application of a Bidirectional DC/DC Converter to Control the Power Distribution in the Battery–Ultracapacitor System," Energies, MDPI, vol. 16(9), pages 1-40, April.
  74. Sun, Wenjie & Wu, Chengke & Xie, Chengde & Wang, Xikang & Guo, Yuanjun & Tang, Yongbing & Zhang, Yanhui & Li, Kang & Du, Guanhao & Yang, Zhile & Yao, Wenjiao, 2025. "Fine-tuning enables state of health estimation for lithium-ion batteries via a time series foundation model," Energy, Elsevier, vol. 318(C).
  75. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
  76. Kim, Jaewon & Sin, Seunghwa & Kim, Jonghoon, 2024. "Early remaining-useful-life prediction applying discrete wavelet transform combined with improved semi-empirical model for high-fidelity in battery energy storage system," Energy, Elsevier, vol. 297(C).
  77. Bo Huang & Yuting Ma & Chun Wang & Yongzhi Chen & Quanqing Yu, 2021. "A Multi-Model Probability Based Two-Layer Fusion Modeling Approach of Supercapacitor for Electric Vehicles," Energies, MDPI, vol. 14(15), pages 1-16, July.
  78. Huang, Huanyang & Meng, Jinhao & Wang, Yuhong & Feng, Fei & Cai, Lei & Peng, Jichang & Liu, Tianqi, 2022. "A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve," Applied Energy, Elsevier, vol. 322(C).
  79. Francesco Conte & Marco Giallongo & Daniele Kaza & Gianluca Natrella & Ryohei Tachibana & Shinji Tsuji & Federico Silvestro & Giovanni Vichi, 2024. "Experimental Validation of Electrothermal and Aging Parameter Identification for Lithium-Ion Batteries," Energies, MDPI, vol. 17(10), pages 1-30, May.
  80. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
  81. Lin, Wei-Jen & Chen, Kuo-Ching, 2022. "Evolution of parameters in the Doyle-Fuller-Newman model of cycling lithium ion batteries by multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
  82. Rahman, Ashikur & Lin, Xianke, 2022. "Li-ion battery individual electrode state of charge and degradation monitoring using battery casing through auto curve matching for standard CCCV charging profile," Applied Energy, Elsevier, vol. 321(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.