IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3542-d1694909.html
   My bibliography  Save this article

From Empirical Measurements to AI Fusion—A Holistic Review of SOH Estimation Techniques for Lithium-Ion Batteries in Electric and Hybrid Vehicles

Author

Listed:
  • Runzhe Shan

    (State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yaxuan Wang

    (State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Shilong Guo

    (State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yue Cui

    (State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Lei Zhao

    (State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Junfu Li

    (School of Automotive Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China)

  • Zhenbo Wang

    (State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Accurate assessment of lithium-ion battery state of health (SOH) represents a cross-disciplinary challenge that is critical for the reliability, safety, and total cost of ownership of electric vehicles (EVs) and hybrid electric vehicles (HEVs). This review systematically examines the evolutionary trajectory of SOH estimation methods, ranging from conventional experimental measurement approaches to cutting-edge data-driven techniques. We analyze how these techniques address critical challenges in battery aging and performance evaluation, while discussing their respective advantages across different application scenarios. The paper highlights emerging trends in artificial intelligence-integrated advanced technologies for SOH estimation, along with practical implementation considerations. Special emphasis is placed on key challenges of SOH estimation in EVs/HEVs applications with proposed alternative solutions. By synthesizing current research directions and identifying critical knowledge gaps, this work provides valuable insights for fundamental research and industrial applications in battery health management.

Suggested Citation

  • Runzhe Shan & Yaxuan Wang & Shilong Guo & Yue Cui & Lei Zhao & Junfu Li & Zhenbo Wang, 2025. "From Empirical Measurements to AI Fusion—A Holistic Review of SOH Estimation Techniques for Lithium-Ion Batteries in Electric and Hybrid Vehicles," Energies, MDPI, vol. 18(13), pages 1-42, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3542-:d:1694909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Tengfei & Lu, Zhiqiang & Yu, Jianbo, 2025. "Dynamic weighted federated contrastive self-supervised learning for state-of-health estimation of Lithium-ion battery with insufficient labeled samples," Applied Energy, Elsevier, vol. 383(C).
    2. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    3. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    4. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    5. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    7. Pepe, Simona & Ciucci, Francesco, 2023. "Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering," Applied Energy, Elsevier, vol. 350(C).
    8. Deyang Yin & Xiao Zhu & Wanjie Zhang & Jianfeng Zheng, 2024. "Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression," Energies, MDPI, vol. 17(22), pages 1-14, November.
    9. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    10. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    11. Zhu, Juner & Zhang, Xiaowei & Luo, Hailing & Sahraei, Elham, 2018. "Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests," Applied Energy, Elsevier, vol. 224(C), pages 251-266.
    12. Fengyuan Fang & Caiqing Ma & Yan Ji, 2024. "A Method for State of Charge and State of Health Estimation of LithiumBatteries Based on an Adaptive Weighting Unscented Kalman Filter," Energies, MDPI, vol. 17(9), pages 1-18, April.
    13. Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
    14. Saadin Oyucu & Betül Ersöz & Şeref Sağıroğlu & Ahmet Aksöz & Emre Biçer, 2024. "Optimizing Lithium-Ion Battery Performance: Integrating Machine Learning and Explainable AI for Enhanced Energy Management," Sustainability, MDPI, vol. 16(11), pages 1-15, June.
    15. Wu, Ji & Fang, Leichao & Dong, Guangzhong & Lin, Mingqiang, 2023. "State of health estimation of lithium-ion battery with improved radial basis function neural network," Energy, Elsevier, vol. 262(PB).
    16. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    17. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    18. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    19. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    2. Sun, Rongli & Chen, Junsheng & Li, Benchuan & Piao, Changhao, 2025. "State of health estimation for Lithium-ion batteries based on novel feature extraction and BiGRU-Attention model," Energy, Elsevier, vol. 319(C).
    3. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    5. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    6. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    7. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    8. Shuo Sun & Junzhong Sun & Zongliang Wang & Zhiyong Zhou & Wei Cai, 2022. "Prediction of Battery SOH by CNN-BiLSTM Network Fused with Attention Mechanism," Energies, MDPI, vol. 15(12), pages 1-17, June.
    9. Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
    10. Tang, Telu & Yang, Xiangguo & Li, Muheng & Li, Xin & Huang, Hai & Guan, Cong & Huang, Jiangfan & Wang, Yufan & Zhou, Chaobin, 2025. "Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 317(C).
    11. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    12. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    13. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    14. Jun He & Xinyu Liu & Wentao Huang & Bohan Zhang & Zuoming Zhang & Zirui Shao & Zimu Mao, 2024. "Health State Assessment of Lithium-Ion Batteries Based on Multi-Health Feature Fusion and Improved Informer Modeling," Energies, MDPI, vol. 17(9), pages 1-18, April.
    15. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    16. Li, Yang & Gao, Guoqiang & Chen, Kui & He, Shuhang & Liu, Kai & Xin, Dongli & Luo, Yang & Long, Zhou & Wu, Guangning, 2025. "State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model," Energy, Elsevier, vol. 319(C).
    17. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    18. Jianyu Zhang & Kang Li, 2024. "State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review," Energies, MDPI, vol. 17(22), pages 1-16, November.
    19. Prakash Venugopal & Vigneswaran T., 2019. "State-of-Health Estimation of Li-ion Batteries in Electric Vehicle Using IndRNN under Variable Load Condition," Energies, MDPI, vol. 12(22), pages 1-29, November.
    20. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3542-:d:1694909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.