IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925000662.html
   My bibliography  Save this article

Dynamic weighted federated contrastive self-supervised learning for state-of-health estimation of Lithium-ion battery with insufficient labeled samples

Author

Listed:
  • Han, Tengfei
  • Lu, Zhiqiang
  • Yu, Jianbo

Abstract

Insufficient data and lack of labeled data are common issues in state-of-health (SOH) estimation of Lithium-Ion battery. Federated learning-based SOH estimation methods offer a promising solution by collaborating multiple battery users to train the SOH estimation model while protecting data privacy. However, existing federated learning-based methods assume that the data collected by local clients are labeled. In practical applications, the labeled data is often sparse due to the high cost of testing battery capacity. To address this problem, a dynamic weighted federated contrastive self-supervised learning method (DW-FCSSL) is proposed in this paper. This approach leverages distributed unlabeled datasets to jointly train a global feature extractor across multiple clients while protecting data privacy, and is subsequently applied to battery SOH estimation. In particular, a time-frequency mixing based data augmentation (TFM-Aug) method is firstly proposed to enhance the capability for feature self-extraction. Secondly, an additional time information reconstruction module is incorporated into intra-client and client-server contrastive learning to extract multi-level degradation information of batteries from scattered unlabeled data. Further, a process-aware dynamic weighted aggregation algorithm is proposed to mitigate the effect of low-quality data from local client on the global model. With the trained global feature extractor, only a small number of labeled samples are required for each client to train a personalized estimator. Finally, the SOH estimation performance of DW-FCSSL is validated on the self-collected battery dataset and NASA battery dataset. It achieves a statistic estimation error of 2.80 % on the self-collected battery dataset with only 20 % labeled samples.

Suggested Citation

  • Han, Tengfei & Lu, Zhiqiang & Yu, Jianbo, 2025. "Dynamic weighted federated contrastive self-supervised learning for state-of-health estimation of Lithium-ion battery with insufficient labeled samples," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000662
    DOI: 10.1016/j.apenergy.2025.125336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Health-Conscious vehicle battery state estimation based on deep transfer learning," Applied Energy, Elsevier, vol. 316(C).
    2. Chen, Xi & Wang, Hui & Lu, Siliang & Xu, Jiawen & Yan, Ruqiang, 2023. "Remaining useful life prediction of turbofan engine using global health degradation representation in federated learning," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Jiwei Wang & Hao Li & Chunling Wu & Yujun Shi & Linxuan Zhang & Yi An, 2024. "State of Health Estimations for Lithium-Ion Batteries Based on MSCNN," Energies, MDPI, vol. 17(17), pages 1-21, August.
    4. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Ruan, Guanqiang & Liu, Zixi & Cheng, Jinrun & Hu, Xing & Chen, Song & Liu, Shiwen & Guo, Yong & Yang, Kuo, 2024. "A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects," Energy, Elsevier, vol. 304(C).
    6. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    7. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    8. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    9. Wang, Yilin & Shen, Lei & Zhang, Yuxuan & Li, Yuanxiang & Zhang, Ruixin & Yang, Yongshen, 2023. "Self-supervised Health Representation Decomposition based on contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Lai, Rucong & Wang, Jie & Tian, Yong & Tian, Jindong, 2024. "FedCBE: A federated-learning-based collaborative battery estimation system with non-IID data," Applied Energy, Elsevier, vol. 368(C).
    11. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dou, Bowen & Hou, Shujuan & Li, Hai & Zhao, Yanpeng & Fan, Yue & Sun, Lei & Chen, Hao-sen, 2025. "Cross-domain state of health estimation for lithium-ion battery based on latent space consistency using few-unlabeled data," Energy, Elsevier, vol. 320(C).
    2. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    3. Mei, Peng & Karimi, Hamid Reza & Xie, Jiale & Chen, Fei & Ou, Lei & Yang, Shichun & Huang, Cong, 2024. "Battery state estimation methods and management system under vehicle–cloud collaboration: A Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    4. Ye, Songtao & An, Dou & Wang, Chun & Zhang, Tao & Xi, Huan, 2025. "Towards fast multi-scale state estimation for retired battery reusing via Pareto-efficient," Energy, Elsevier, vol. 319(C).
    5. Wang, Tong & Wu, Yan & Zhu, Keming & Cen, Jianmeng & Wang, Shaohong & Huang, Yuqi, 2025. "Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data," Energy, Elsevier, vol. 317(C).
    6. Cai, Nian & Que, Xiaoping & Zhang, Xu & Feng, Weiguo & Zhou, Yinghong, 2024. "A deep learning framework for the joint prediction of the SOH and RUL of lithium-ion batteries based on bimodal images," Energy, Elsevier, vol. 302(C).
    7. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    8. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    9. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    10. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    11. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    12. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    13. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    14. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    15. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    16. Tianshu Shao & Xiangdong Xu & Yuelong Su, 2025. "Evaluation and Prediction of Agricultural Water Use Efficiency in the Jianghan Plain Based on the Tent-SSA-BPNN Model," Agriculture, MDPI, vol. 15(2), pages 1-32, January.
    17. Wang, Shunli & Wu, Yingyang & Zhou, Heng & Zhang, Qin & Fernandez, Carlos & Blaabjerg, Frede, 2025. "Improved particle swarm optimization-adaptive dual extended Kalman filtering for accurate battery state of charge and state of energy joint estimation with efficient core factor feedback correction," Energy, Elsevier, vol. 322(C).
    18. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    19. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    20. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.