IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925007780.html

Mechanism and analytical modeling of high-rate discharge aging in lithium-ion batteries: Emphasizing cathode current collector dissolution and particle fracture

Author

Listed:
  • Han, Jingbo
  • Li, Guoliang
  • Zhu, Chong
  • Wang, Yansong
  • Fan, Guodong
  • Guo, Bangjun
  • Zhang, Xi

Abstract

Energy-type batteries with cathode materials of LiMnxNiyCozO2 (NMC) are widely utilized in electric vehicles (EVs) owing to their excellent energy density characteristics. With the increasing number of high-power application scenarios, it has become crucial to investigate the aging mechanisms of energy-type batteries under high-rate discharge conditions and to quantitatively analyze the aging phenomena. This study first conducts accelerated aging tests at 1C, 2C, and 3C discharge rates, and employs various macro and micro testing techniques to thoroughly analyze the physical processes of battery aging. The results indicate that cathode current collector dissolution, Al deposition on the anode, and cathode particle fracture are the primary causes of capacity decay. Additionally, by integrating the modified Butler-Volmer (BV) equation with the existing extended single particle model (ESPM), the accuracy of voltage simulation at high discharge rates is enhanced. Finally, combining the aforementioned aging mechanisms, the electrochemical model, and the thermal resistance network model, a comprehensive electrochemical-thermal-aging coupled model is established. Validation results at different discharge aging rates demonstrate that the model can achieve high-accuracy state of health (SOH) estimation throughout the entire battery lifecycle and accurately simulate discharge curves at various rates.

Suggested Citation

  • Han, Jingbo & Li, Guoliang & Zhu, Chong & Wang, Yansong & Fan, Guodong & Guo, Bangjun & Zhang, Xi, 2025. "Mechanism and analytical modeling of high-rate discharge aging in lithium-ion batteries: Emphasizing cathode current collector dissolution and particle fracture," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007780
    DOI: 10.1016/j.apenergy.2025.126048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yizhao & Liu, Chenghao & Chen, Shun & Zhang, Xi & Fan, Guodong & Zhu, Chong, 2022. "Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications," Applied Energy, Elsevier, vol. 309(C).
    2. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    3. Li, Changlong & Cui, Naxin & Wang, Chunyu & Zhang, Chenghui, 2021. "Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods," Energy, Elsevier, vol. 221(C).
    4. Liu, Yang & Zhang, Caiping & Jiang, Jiuchun & Zhang, Linjing & Zhang, Weige & Lao, Li & Yang, Shichun, 2023. "A 3D distributed circuit-electrochemical model for the inner inhomogeneity of lithium-ion battery," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yanmin & Xu, Jun & Jin, Chengwei & Jia, Zhenyu & Mei, Xuesong, 2024. "A novel reduced-order electrochemical model of lithium-ion batteries with both high fidelity and real-time applicability," Energy, Elsevier, vol. 306(C).
    2. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    3. Hossam M. Hussein & Ahmed Aghmadi & Mahmoud S. Abdelrahman & S M Sajjad Hossain Rafin & Osama Mohammed, 2024. "A review of battery state of charge estimation and management systems: Models and future prospective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    4. Alessandro Giuliano & Yuandi Wu & John Yawney & Stephen Andrew Gadsden, 2025. "Transformer-Based Transfer Learning for Battery State-of-Health Estimation," Energies, MDPI, vol. 18(20), pages 1-21, October.
    5. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    6. Lin, Mingqiang & Wu, Denggao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "Health prognosis for lithium-ion battery with multi-feature optimization," Energy, Elsevier, vol. 264(C).
    7. Andrzej P. Nowak & Paweł Rutecki & Mariusz Szkoda & Konrad Trzciński, 2024. "Determination of Sodium Ion Diffusion Coefficient in Tin Sulfide@Carbon Anode Material Using GITT and EIS Techniques," Energies, MDPI, vol. 17(13), pages 1-11, July.
    8. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    9. Lopez-Salazar, Camilo & Ekwaro-Osire, Stephen & Dabetwar, Shweta & Alemayehu, Fisseha, 2025. "A comprehensive framework for estimating the remaining useful life of Li-ion batteries under limited data conditions with no temporal identifier," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    11. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    12. Li, Hao & Chen, Chao, 2025. "Lithium-ion battery SOH prediction based on multi-dimensional features and multi-model feature selector," Energy, Elsevier, vol. 331(C).
    13. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    14. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    15. Ashikur Rahman & Xianke Lin & Chongming Wang, 2022. "Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer," Energies, MDPI, vol. 15(15), pages 1-19, August.
    16. Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
    17. Kanchana Sivalertporn & Piyawong Poopanya & Teeraphon Phophongviwat, 2025. "Capacity Forecasting of Lithium-Ion Batteries Using Empirical Models: Toward Efficient SOH Estimation with Limited Cycle Data," Energies, MDPI, vol. 18(14), pages 1-15, July.
    18. Li, Penghua & Ye, Jiangtao & Hou, Jie & Deng, Zhongwei & Xiang, Sheng, 2025. "State of charge estimation for lithium-ion battery using a multi-feature Mamba network and UKF under mixed operating conditions," Energy, Elsevier, vol. 335(C).
    19. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
    20. Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.