IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v184y2016icp1508-1516.html
   My bibliography  Save this item

Multi-objective optimization and simulation model for the design of distributed energy systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
  2. Alberto Fichera & Alessandro Pluchino & Rosaria Volpe, 2020. "Modelling Energy Distribution in Residential Areas: A Case Study Including Energy Storage Systems in Catania, Southern Italy," Energies, MDPI, vol. 13(14), pages 1-21, July.
  3. Hye-Rim Kim & Tong-Seop Kim, 2021. "Optimization of Sizing and Operation Strategy of Distributed Generation System Based on a Gas Turbine and Renewable Energy," Energies, MDPI, vol. 14(24), pages 1-28, December.
  4. Kamali, Sadegh & Amraee, Turaj, 2017. "Blackout prediction in interconnected electric energy systems considering generation re-dispatch and energy curtailment," Applied Energy, Elsevier, vol. 187(C), pages 50-61.
  5. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
  6. Romanchenko, Dmytro & Odenberger, Mikael & Göransson, Lisa & Johnsson, Filip, 2017. "Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg, Sweden," Applied Energy, Elsevier, vol. 204(C), pages 16-30.
  7. van der Heijde, Bram & Vandermeulen, Annelies & Salenbien, Robbe & Helsen, Lieve, 2019. "Representative days selection for district energy system optimisation: a solar district heating system with seasonal storage," Applied Energy, Elsevier, vol. 248(C), pages 79-94.
  8. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
  9. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  10. Neuvonen, Lauri & Wildemeersch, Matthias & Vilkkumaa, Eeva, 2023. "Supporting strategy selection in multiobjective decision problems under uncertainty and hidden requirements," European Journal of Operational Research, Elsevier, vol. 307(1), pages 279-293.
  11. Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
  12. Krisha Maharjan & Jian Zhang & Heejin Cho & Yang Chen, 2023. "Distributed Energy Systems: Multi-Objective Design Optimization Based on Life Cycle Environmental and Economic Impacts," Energies, MDPI, vol. 16(21), pages 1-21, October.
  13. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
  14. Thibaut Résimont & Quentin Louveaux & Pierre Dewallef, 2021. "Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System," Energies, MDPI, vol. 14(17), pages 1-24, September.
  15. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
  16. Yuan, Jiahang & Luo, Xinggang & Li, Yun & Hu, Xiaoqing & Chen, Wenchong & Zhang, Yue, 2022. "Multi criteria decision-making for distributed energy system based on multi-source heterogeneous data," Energy, Elsevier, vol. 239(PD).
  17. Dorotić, Hrvoje & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2021. "Evaluation of district heating with regard to individual systems – Importance of carbon and cost allocation in cogeneration units," Energy, Elsevier, vol. 221(C).
  18. Alberto Fichera & Mattia Frasca & Rosaria Volpe, 2020. "A cost-based approach for evaluating the impact of a network of distributed energy systems on the centralized energy supply," Energy & Environment, , vol. 31(1), pages 77-87, February.
  19. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
  20. Bram van der Heijde & Annelies Vandermeulen & Robbe Salenbien & Lieve Helsen, 2019. "Integrated Optimal Design and Control of Fourth Generation District Heating Networks with Thermal Energy Storage," Energies, MDPI, vol. 12(14), pages 1-34, July.
  21. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  22. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
  23. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
  24. Cicconi, Paolo & Landi, Daniele & Germani, Michele & Russo, Anna Costanza, 2017. "A support approach for the conceptual design of energy-efficient cooker hoods," Applied Energy, Elsevier, vol. 206(C), pages 222-239.
  25. Kang, Jing & Wang, Shengwei, 2018. "Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations," Applied Energy, Elsevier, vol. 231(C), pages 615-627.
  26. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  27. Fahad Haneef & Giovanni Pernigotto & Andrea Gasparella & Jérôme Henri Kämpf, 2021. "Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for Building Energy Renovation at District Scale," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
  28. Shuai Yu & Yi Yang & Shuqin Chen & Haowei Xing & Yinan Guo & Weijia Feng & Jianchao Zhang & Junhan Zhang, 2024. "Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production," Sustainability, MDPI, vol. 16(5), pages 1-46, February.
  29. Jie Ji & Xin Xia & Wei Ni & Kailiang Teng & Chunqiong Miao & Yaodong Wang & Tony Roskilly, 2019. "An Experimental and Simulation Study on Optimisation of the Operation of a Distributed Power Generation System with Energy Storage—Meeting Dynamic Household Electricity Demand," Energies, MDPI, vol. 12(6), pages 1-16, March.
  30. Zheng, Xuyue & Qiu, Yuwei & Zhan, Xiangyan & Zhu, Xingyi & Keirstead, James & Shah, Nilay & Zhao, Yingru, 2017. "Optimization based planning of urban energy systems: Retrofitting a Chinese industrial park as a case-study," Energy, Elsevier, vol. 139(C), pages 31-41.
  31. Yu Liu & Shan Gao & Xin Zhao & Chao Zhang & Ningyu Zhang, 2017. "Coordinated Operation and Control of Combined Electricity and Natural Gas Systems with Thermal Storage," Energies, MDPI, vol. 10(7), pages 1-25, July.
  32. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  33. Ying Zhu & Quanling Tong & Xueting Zeng & Xiaxia Yan & Yongping Li & Guohe Huang, 2019. "Optimal Design of a Distributed Energy System Using the Functional Interval Model That Allows Reduced Carbon Emissions in Guanzhong, a Rural Area of China," Sustainability, MDPI, vol. 11(7), pages 1-22, April.
  34. Johannes Röder & David Beier & Benedikt Meyer & Joris Nettelstroth & Torben Stührmann & Edwin Zondervan, 2020. "Design of Renewable and System-Beneficial District Heating Systems Using a Dynamic Emission Factor for Grid-Sourced Electricity," Energies, MDPI, vol. 13(3), pages 1-22, February.
  35. Mokhtar, Maizura & Burns, Stephen & Ross, Dave & Hunt, Ian, 2017. "Exploring multi-objective trade-offs in the design space of a waste heat recovery system," Applied Energy, Elsevier, vol. 195(C), pages 114-124.
  36. David Morillón Gálvez & Iván García Kerdan & Germán Carmona-Paredes, 2022. "Assessing the Potential of Implementing a Solar-Based Distributed Energy System for a University Using the Campus Bus Stops," Energies, MDPI, vol. 15(10), pages 1-16, May.
  37. Zhigang Duan & Yamin Yan & Xiaohan Yan & Qi Liao & Wan Zhang & Yongtu Liang & Tianqi Xia, 2017. "An MILP Method for Design of Distributed Energy Resource System Considering Stochastic Energy Supply and Demand," Energies, MDPI, vol. 11(1), pages 1-23, December.
  38. Braeuer, Fritz & Kleinebrahm, Max & Naber, Elias & Scheller, Fabian & McKenna, Russell, 2022. "Optimal system design for energy communities in multi-family buildings: the case of the German Tenant Electricity Law," Applied Energy, Elsevier, vol. 305(C).
  39. Hachem-Vermette, Caroline & Singh, Kuljeet, 2020. "Developing an optimization methodology for urban energy resources mix," Applied Energy, Elsevier, vol. 269(C).
  40. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
  41. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
  42. Felice, Alex & Rakocevic, Lucija & Peeters, Leen & Messagie, Maarten & Coosemans, Thierry & Ramirez Camargo, Luis, 2022. "Renewable energy communities: Do they have a business case in Flanders?," Applied Energy, Elsevier, vol. 322(C).
  43. Novoa, Laura & Flores, Robert & Brouwer, Jack, 2019. "Optimal renewable generation and battery storage sizing and siting considering local transformer limits," Applied Energy, Elsevier, vol. 256(C).
  44. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.
  45. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
  46. Singh, Kuljeet & Hachem-Vermette, Caroline, 2021. "Economical energy resource planning to promote sustainable urban design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  47. Li, Ximei & Gao, Jianmin & Chen, Bingyuan & You, Shi & Zheng, Yi & Du, Qian & Qin, Yukun, 2023. "Multi-objective optimization of district heating systems with turbine-driving fans and pumps considering economic, exergic, and environmental aspects," Energy, Elsevier, vol. 277(C).
  48. Wang, Ni & Heijnen, Petra W. & Imhof, Pieter J., 2020. "A multi-actor perspective on multi-objective regional energy system planning," Energy Policy, Elsevier, vol. 143(C).
  49. Cramer, Wilhelm & Schumann, Klemens & Andres, Michael & Vertgewall, Chris & Monti, Antonello & Schreck, Sebastian & Metzger, Michael & Jessenberger, Stefan & Klaus, Joachim & Brunner, Christoph & Heri, 2021. "A simulative framework for a multi-regional assessment of local energy markets – A case of large-scale electric vehicle deployment in Germany," Applied Energy, Elsevier, vol. 299(C).
  50. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  51. Ihsan, Abbas & Brear, Michael J. & Jeppesen, Matthew, 2021. "Impact of operating uncertainty on the performance of distributed, hybrid, renewable power plants," Applied Energy, Elsevier, vol. 282(PB).
  52. Wang, Zhenfeng & Xu, Guangyin & Wang, Heng & Ren, Jingzheng, 2019. "Distributed energy system for sustainability transition: A comprehensive assessment under uncertainties based on interval multi-criteria decision making method by coupling interval DEMATEL and interva," Energy, Elsevier, vol. 169(C), pages 750-761.
  53. Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
  54. Mariaud, Arthur & Acha, Salvador & Ekins-Daukes, Ned & Shah, Nilay & Markides, Christos N., 2017. "Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings," Applied Energy, Elsevier, vol. 199(C), pages 466-478.
  55. Matteo Nicoli & Francesco Gracceva & Daniele Lerede & Laura Savoldi, 2022. "Can We Rely on Open-Source Energy System Optimization Models? The TEMOA-Italy Case Study," Energies, MDPI, vol. 15(18), pages 1-37, September.
  56. Henrik Schwaeppe & Luis Böttcher & Klemens Schumann & Lukas Hein & Philipp Hälsig & Simon Thams & Paula Baquero Lozano & Albert Moser, 2022. "Analyzing Intersectoral Benefits of District Heating in an Integrated Generation and Transmission Expansion Planning Model," Energies, MDPI, vol. 15(7), pages 1-31, March.
  57. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
  58. Kang, Jing & Wang, Shengwei & Yan, Chengchu, 2019. "A new distributed energy system configuration for cooling dominated districts and the performance assessment based on real site measurements," Renewable Energy, Elsevier, vol. 131(C), pages 390-403.
  59. Qiu, Rui & Liao, Qi & Yan, Jie & Yan, Yamin & Guo, Zhichao & Liang, Yongtu & Zhang, Haoran, 2021. "The coupling impact of subsystem interconnection and demand response on the distributed energy systems: A case study of the composite community in China," Energy, Elsevier, vol. 228(C).
  60. Friebe, Maximilian & Karasu, Arda & Kriegel, Martin, 2023. "Methodology to compare and optimize district heating and decentralized heat supply for energy transformation on a municipality level," Energy, Elsevier, vol. 282(C).
  61. Nima Mirzaei Alavijeh & David Steen & Zack Norwood & Le Anh Tuan & Christos Agathokleous, 2020. "Cost-Effectiveness of Carbon Emission Abatement Strategies for a Local Multi-Energy System—A Case Study of Chalmers University of Technology Campus," Energies, MDPI, vol. 13(7), pages 1-23, April.
  62. Hachem-Vermette, Caroline & Singh, Kuljeet, 2022. "Optimization of energy resources in various building cluster archetypes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  63. Dorotić, Hrvoje & Pukšec, Tomislav & Duić, Neven, 2019. "Multi-objective optimization of district heating and cooling systems for a one-year time horizon," Energy, Elsevier, vol. 169(C), pages 319-328.
  64. Fichera, Alberto & Frasca, Mattia & Volpe, Rosaria, 2017. "Complex networks for the integration of distributed energy systems in urban areas," Applied Energy, Elsevier, vol. 193(C), pages 336-345.
  65. Iijima, Fuyumi & Ikeda, Shintaro & Nagai, Tatsuo, 2022. "Automated computational design method for energy systems in buildings using capacity and operation optimization," Applied Energy, Elsevier, vol. 306(PA).
  66. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  67. Ito, Masakazu & Takano, Akihisa & Shinji, Takao & Yagi, Takahiro & Hayashi, Yasuhiro, 2017. "Electricity adjustment for capacity market auction by a district heating and cooling system," Applied Energy, Elsevier, vol. 206(C), pages 623-633.
  68. Dorotić, Hrvoje & Pukšec, Tomislav & Duić, Neven, 2019. "Economical, environmental and exergetic multi-objective optimization of district heating systems on hourly level for a whole year," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  69. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
  70. Müller, C. & Hoffrichter, A. & Wyrwoll, L. & Schmitt, C. & Trageser, M. & Kulms, T. & Beulertz, D. & Metzger, M. & Duckheim, M. & Huber, M. & Küppers, M. & Most, D. & Paulus, S. & Heger, H.J. & Schnet, 2019. "Modeling framework for planning and operation of multi-modal energy systems in the case of Germany," Applied Energy, Elsevier, vol. 250(C), pages 1132-1146.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.