IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5575-d630020.html
   My bibliography  Save this article

Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System

Author

Listed:
  • Thibaut Résimont

    (Department of Aerospace & Mechanical Engineering, University of Liège, 4000 Liège, Belgium)

  • Quentin Louveaux

    (Montefiore Institute, University of Liège, 4000 Liège, Belgium)

  • Pierre Dewallef

    (Department of Aerospace & Mechanical Engineering, University of Liège, 4000 Liège, Belgium)

Abstract

The implementation of district heating networks into cities is a main topic in policy planning that looks for sustainable solutions to reduce CO 2 emissions. However, their development into cities is generally limited by a high initial investment cost. The development of optimization methods intended to draft efficient systems using heating consumption profiles into a prescribed geographic area are useful in this purpose. Such tools are already referred to in the scientific literature, yet they are often restricted to limit the computational load. To bridge this gap, the present contribution proposes a multi-period mixed integer linear programming model for the optimal outline and sizing of a district heating network maximizing the net cash flow based on a geographic information system. This methodology targets a large range of problem sizes from small-scale to large-scale heating networks while guaranteeing numerical robustness. For sake of simplicity, the developed model is first applied to a scaled down case study with 3 available heating sources and a neighborhood of 16 streets. The full-scale model is presented afterwards to demonstrate the applicability of the tool for city-scale heating networks with around 2000 streets to potentially connect within a reasonable computational time of around only one hour.

Suggested Citation

  • Thibaut Résimont & Quentin Louveaux & Pierre Dewallef, 2021. "Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System," Energies, MDPI, vol. 14(17), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5575-:d:630020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
    2. Falke, Tobias & Krengel, Stefan & Meinerzhagen, Ann-Kathrin & Schnettler, Armin, 2016. "Multi-objective optimization and simulation model for the design of distributed energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1508-1516.
    3. Molyneaux, A. & Leyland, G. & Favrat, D., 2010. "Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps," Energy, Elsevier, vol. 35(2), pages 751-758.
    4. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    5. Dobos, László & Abonyi, János, 2011. "Controller tuning of district heating networks using experiment design techniques," Energy, Elsevier, vol. 36(8), pages 4633-4639.
    6. David G. Luenberger & Yinyu Ye, 2016. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 4, number 978-3-319-18842-3, September.
    7. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    8. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    9. Bordin, Chiara & Gordini, Angelo & Vigo, Daniele, 2016. "An optimization approach for district heating strategic network design," European Journal of Operational Research, Elsevier, vol. 252(1), pages 296-307.
    10. Bram van der Heijde & Annelies Vandermeulen & Robbe Salenbien & Lieve Helsen, 2019. "Integrated Optimal Design and Control of Fourth Generation District Heating Networks with Thermal Energy Storage," Energies, MDPI, vol. 12(14), pages 1-34, July.
    11. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    12. Maria Jebamalai, Joseph & Marlein, Kurt & Laverge, Jelle & Vandevelde, Lieven & van den Broek, Martijn, 2019. "An automated GIS-based planning and design tool for district heating: Scenarios for a Dutch city," Energy, Elsevier, vol. 183(C), pages 487-496.
    13. Guelpa, Elisa & Barbero, Giulia & Sciacovelli, Adriano & Verda, Vittorio, 2017. "Peak-shaving in district heating systems through optimal management of the thermal request of buildings," Energy, Elsevier, vol. 137(C), pages 706-714.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    15. Mertz, Théophile & Serra, Sylvain & Henon, Aurélien & Reneaume, Jean-Michel, 2016. "A MINLP optimization of the configuration and the design of a district heating network: Academic study cases," Energy, Elsevier, vol. 117(P2), pages 450-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wack, Yannick & Baelmans, Martine & Salenbien, Robbe & Blommaert, Maarten, 2023. "Economic topology optimization of District Heating Networks using a pipe penalization approach," Energy, Elsevier, vol. 264(C).
    2. Wack, Yannick & Serra, Sylvain & Baelmans, Martine & Reneaume, Jean-Michel & Blommaert, Maarten, 2023. "Nonlinear topology optimization of District Heating Networks: A benchmark of a mixed-integer and a density-based approach," Energy, Elsevier, vol. 278(PB).
    3. Liudmyla Davydenko & Nina Davydenko & Agnieszka Deja & Bogusz Wiśnicki & Tygran Dzhuguryan, 2023. "Efficient Energy Management for the Smart Sustainable City Multifloor Manufacturing Clusters: A Formalization of the Water Supply System Operation Conditions Based on Monitoring Water Consumption Prof," Energies, MDPI, vol. 16(11), pages 1-25, June.
    4. Piotr Pałka & Marcin Malec & Przemysław Kaszyński & Jacek Kamiński & Piotr Saługa, 2023. "District Heating System Optimisation: A Three-Phase Thermo-Hydraulic Linear Model," Energies, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    2. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    3. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    4. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    5. Guelpa, Elisa & Verda, Vittorio, 2018. "Model for optimal malfunction management in extended district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 519-530.
    6. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    7. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    8. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    9. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Blommaert, Maarten & Wack, Y. & Baelmans, M., 2020. "An adjoint optimization approach for the topological design of large-scale district heating networks based on nonlinear models," Applied Energy, Elsevier, vol. 280(C).
    12. Régis Delubac & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2021. "A Dynamic Optimization Tool to Size and Operate Solar Thermal District Heating Networks Production Plants," Energies, MDPI, vol. 14(23), pages 1-27, November.
    13. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    15. Kazagic, Anes & Merzic, Ajla & Redzic, Elma & Tresnjo, Dino, 2019. "Optimization of modular district heating solution based on CHP and RES - Demonstration case of the Municipality of Visoko," Energy, Elsevier, vol. 181(C), pages 56-65.
    16. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
    17. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    18. Dorotić, Hrvoje & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2021. "Evaluation of district heating with regard to individual systems – Importance of carbon and cost allocation in cogeneration units," Energy, Elsevier, vol. 221(C).
    19. Best, Robert E. & Rezazadeh Kalehbasti, P. & Lepech, Michael D., 2020. "A novel approach to district heating and cooling network design based on life cycle cost optimization," Energy, Elsevier, vol. 194(C).
    20. Friebe, Maximilian & Karasu, Arda & Kriegel, Martin, 2023. "Methodology to compare and optimize district heating and decentralized heat supply for energy transformation on a municipality level," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5575-:d:630020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.