IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v129y2014icp320-335.html
   My bibliography  Save this item

Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ribau, João P. & Sousa, João M.C. & Silva, Carla M., 2015. "Reducing the carbon footprint of urban bus fleets using multi-objective optimization," Energy, Elsevier, vol. 93(P1), pages 1089-1104.
  2. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
  3. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
  4. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
  5. Francesco Bottiglione & Stefano De Pinto & Giacomo Mantriota & Aldo Sorniotti, 2014. "Energy Consumption of a Battery Electric Vehicle with Infinitely Variable Transmission," Energies, MDPI, vol. 7(12), pages 1-21, December.
  6. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  7. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
  8. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
  9. Haoyi Zhang & Fuquan Zhao & Han Hao & Zongwei Liu, 2023. "Life Cycle Emissions of Passenger Vehicles in China: A Sensitivity Analysis of Multiple Influencing Factors," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
  10. Agnieszka Malkowska & Arkadiusz Malkowski, 2021. "International Trade in Transport Services between Poland and the European Union," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
  11. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
  12. Muataz Abotabik & Richard T. Meyer, 2021. "Switched Optimal Control of a Heavy-Duty Hybrid Vehicle," Energies, MDPI, vol. 14(20), pages 1-20, October.
  13. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Zhao, Jianning, 2015. "Development of a new hybrid bus for urban public transportation," Applied Energy, Elsevier, vol. 157(C), pages 583-594.
  14. Donkyu Baek & Yukai Chen & Naehyuck Chang & Enrico Macii & Massimo Poncino, 2020. "Optimal Battery Sizing for Electric Truck Delivery," Energies, MDPI, vol. 13(3), pages 1-15, February.
  15. Zhang, Haoyi & Zhao, Fuquan & Hao, Han & Liu, Zongwei, 2023. "Comparative analysis of life cycle greenhouse gas emission of passenger cars: A case study in China," Energy, Elsevier, vol. 265(C).
  16. Xu, Yanzhi & Gbologah, Franklin E. & Lee, Dong-Yeon & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2015. "Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling," Applied Energy, Elsevier, vol. 154(C), pages 143-159.
  17. Briggs, Ian & Murtagh, Martin & Kee, Robert & McCulloug, Geoffrey & Douglas, Roy, 2017. "Sustainable non-automotive vehicles: The simulation challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 840-851.
  18. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
  19. Dimitrova, Zlatina & Maréchal, François, 2016. "Techno–economic design of hybrid electric vehicles and possibilities of the multi-objective optimization structure," Applied Energy, Elsevier, vol. 161(C), pages 746-759.
  20. Wei Wu & Julius Partridge & Richard Bucknall, 2019. "Development and Evaluation of a Degree of Hybridisation Identification Strategy for a Fuel Cell Supercapacitor Hybrid Bus," Energies, MDPI, vol. 12(1), pages 1-18, January.
  21. Siami-Irdemoosa, Elnaz & Dindarloo, Saeid R., 2015. "Prediction of fuel consumption of mining dump trucks: A neural networks approach," Applied Energy, Elsevier, vol. 151(C), pages 77-84.
  22. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
  23. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
  24. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
  25. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
  26. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
  27. Xylia, Maria & Silveira, Semida, 2018. "The role of charging technologies in upscaling the use of electric buses in public transport: Experiences from demonstration projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 399-415.
  28. Dennis Dreier & Semida Silveira & Dilip Khatiwada & Keiko V. O. Fonseca & Rafael Nieweglowski & Renan Schepanski, 2019. "The influence of passenger load, driving cycle, fuel price and different types of buses on the cost of transport service in the BRT system in Curitiba, Brazil," Transportation, Springer, vol. 46(6), pages 2195-2242, December.
  29. Saadon Al-Ogaili, Ali & Ramasamy, Agileswari & Juhana Tengku Hashim, Tengku & Al-Masri, Ahmed N. & Hoon, Yap & Neamah Jebur, Mustafa & Verayiah, Renuga & Marsadek, Marayati, 2020. "Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study," Applied Energy, Elsevier, vol. 280(C).
  30. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
  31. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
  32. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Thanikanti Sudhakar Babu & Yap Hoon & Majid A. Abdullah & Ameer Alhasan & Ammar Al-Sharaa, 2021. "Electric Buses in Malaysia: Policies, Innovations, Technologies and Life Cycle Evaluations," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
  33. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
  34. Jianyun, Zhu & Li, Chen & Lijuan, Xia & Bin, Wang, 2019. "Bi-objective optimal design of plug-in hybrid electric propulsion system for ships," Energy, Elsevier, vol. 177(C), pages 247-261.
  35. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
  36. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
  37. Menglin Li & Haoran Liu & Mei Yan & Hongyang Xu & Hongwen He, 2022. "A Novel Multi-Objective Energy Management Strategy for Fuel Cell Buses Quantifying Fuel Cell Degradation as Operating Cost," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.