IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v112y2013icp215-223.html
   My bibliography  Save this item

High-resolution modeling framework for planning electricity systems with high penetration of renewables

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Niina Helistö & Juha Kiviluoma & Jussi Ikäheimo & Topi Rasku & Erkka Rinne & Ciara O’Dwyer & Ran Li & Damian Flynn, 2019. "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, MDPI, vol. 12(17), pages 1-34, September.
  2. Heejung Park, 2020. "Generation Capacity Expansion Planning Considering Hourly Dynamics of Renewable Resources," Energies, MDPI, vol. 13(21), pages 1-15, October.
  3. Wyrwa, Artur & Suwała, Wojciech & Pluta, Marcin & Raczyński, Maciej & Zyśk, Janusz & Tokarski, Stanisław, 2022. "A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system," Energy, Elsevier, vol. 239(PE).
  4. Flores, Julio R. & Montagna, Jorge M. & Vecchietti, Aldo, 2014. "An optimization approach for long term investments planning in energy," Applied Energy, Elsevier, vol. 122(C), pages 162-178.
  5. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
  6. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
  7. Gökay Yörük & Ugur Bac & Fatma Yerlikaya-Özkurt & Kamil Demirberk Ünlü, 2023. "Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
  8. Scheer, Dirk, 2017. "Communicating energy system modelling to the wider public: An analysis of German media coverage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1389-1398.
  9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  10. Ma, Huan & Sun, Qinghan & Chen, Lei & Chen, Qun & Zhao, Tian & He, Kelun & Xu, Fei & Min, Yong & Wang, Shunjiang & Zhou, Guiping, 2023. "Cogeneration transition for energy system decarbonization: From basic to flexible and complementary multi-energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  11. Thellufsen, Jakob Zinck & Lund, Henrik, 2016. "Roles of local and national energy systems in the integration of renewable energy," Applied Energy, Elsevier, vol. 183(C), pages 419-429.
  12. Utama, Christian & Meske, Christian & Schneider, Johannes & Ulbrich, Carolin, 2022. "Reactive power control in photovoltaic systems through (explainable) artificial intelligence," Applied Energy, Elsevier, vol. 328(C).
  13. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
  14. Drouineau, Mathilde & Maïzi, Nadia & Mazauric, Vincent, 2014. "Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators," Applied Energy, Elsevier, vol. 116(C), pages 333-343.
  15. Laura Torralba-Díaz & Christoph Schimeczek & Matthias Reeg & Georgios Savvidis & Marc Deissenroth-Uhrig & Felix Guthoff & Benjamin Fleischer & Kai Hufendiek, 2020. "Identification of the Efficiency Gap by Coupling a Fundamental Electricity Market Model and an Agent-Based Simulation Model," Energies, MDPI, vol. 13(15), pages 1-19, July.
  16. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  17. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
  18. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
  19. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
  20. Chen, Siyuan & Liu, Pei & Li, Zheng, 2019. "Multi-regional power generation expansion planning with air pollutants emission constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 382-394.
  21. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
  22. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
  23. Karakoyun, Ece Cigdem & Avci, Harun & Kocaman, Ayse Selin & Nadar, Emre, 2023. "Deviations from commitments: Markov decision process formulations for the role of energy storage," International Journal of Production Economics, Elsevier, vol. 255(C).
  24. Rocco, Matteo V. & Di Lucchio, Alberto & Colombo, Emanuela, 2017. "Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach," Applied Energy, Elsevier, vol. 194(C), pages 832-844.
  25. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
  26. Salehin, Sayedus & Ferdaous, M. Tanvirul & Chowdhury, Ridhwan M. & Shithi, Sumaia Shahid & Rofi, M.S.R. Bhuiyan & Mohammed, Mahir Asif, 2016. "Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis," Energy, Elsevier, vol. 112(C), pages 729-741.
  27. Doepfert, Markus & Castro, Rui, 2021. "Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal," Renewable Energy, Elsevier, vol. 165(P1), pages 491-503.
  28. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
  29. Cho, Seolhee & Kim, Jiyong, 2015. "Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea," Energy, Elsevier, vol. 85(C), pages 317-328.
  30. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
  31. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
  32. Poncelet, Kris & Delarue, Erik & Six, Daan & Duerinck, Jan & D’haeseleer, William, 2016. "Impact of the level of temporal and operational detail in energy-system planning models," Applied Energy, Elsevier, vol. 162(C), pages 631-643.
  33. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  34. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
  35. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  36. Mondal, Md. Alam Hossain & Kennedy, Scott & Mezher, Toufic, 2014. "Long-term optimization of United Arab Emirates energy future: Policy implications," Applied Energy, Elsevier, vol. 114(C), pages 466-474.
  37. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
  38. Wahyudi Sutopo & Ika Shinta Mardikaningsih & Roni Zakaria & Ahad Ali, 2020. "A Model to Improve the Implementation Standards of Street Lighting Based on Solar Energy: A Case Study," Energies, MDPI, vol. 13(3), pages 1-20, February.
  39. Zhou, Wenji & Hagos, Dejene Assefa & Stikbakke, Sverre & Huang, Lizhen & Cheng, Xu & Onstein, Erling, 2022. "Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway – The case of Hinnøya," Energy, Elsevier, vol. 246(C).
  40. Reyseliani, Nadhilah & Hidayatno, Akhmad & Purwanto, Widodo Wahyu, 2022. "Implication of the Paris agreement target on Indonesia electricity sector transition to 2050 using TIMES model," Energy Policy, Elsevier, vol. 169(C).
  41. Rinne, S. & Syri, S., 2015. "The possibilities of combined heat and power production balancing large amounts of wind power in Finland," Energy, Elsevier, vol. 82(C), pages 1034-1046.
  42. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
  43. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
  44. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  45. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  46. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
  47. Golombek, Rolf & Lind, Arne & Ringkjøb, Hans-Kristian & Seljom, Pernille, 2022. "The role of transmission and energy storage in European decarbonization towards 2050," Energy, Elsevier, vol. 239(PC).
  48. Jain, A. & Yamujala, S. & Gaur, A. & Das, P. & Bhakar, R. & Mathur, J., 2023. "Power sector decarbonization planning considering renewable resource variability and system operational constraints," Applied Energy, Elsevier, vol. 331(C).
  49. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
  50. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
  51. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain, 2017. "Operational flexibility of future generation portfolios with high renewables," Applied Energy, Elsevier, vol. 206(C), pages 32-41.
  52. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2017. "Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid," Applied Energy, Elsevier, vol. 195(C), pages 786-799.
  53. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.
  54. Wierzbowski, Michal & Filipiak, Izabela & Lyzwa, Wojciech, 2017. "Polish energy policy 2050 – An instrument to develop a diversified and sustainable electricity generation mix in coal-based energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 51-70.
  55. Gerbelová, Hana & Amorim, Filipa & Pina, André & Melo, Mário & Ioakimidis, Christos & Ferrão, Paulo, 2014. "Potential of CO2 (carbon dioxide) taxes as a policy measure towards low-carbon Portuguese electricity sector by 2050," Energy, Elsevier, vol. 69(C), pages 113-119.
  56. Changgi Min & Heejin Kim, 2024. "A Practical Framework for Developing Net-Zero Electricity Mix Scenarios: A Case Study of South Korea," Energies, MDPI, vol. 17(4), pages 1-37, February.
  57. Karbasioun, Matin & Gholamalipour, Afshin & Safaie, Nasser & Shirazizadeh, Rasool & Amidpour, Majid, 2023. "Developing sustainable power systems by evaluating techno-economic, environmental, and social indicators from a system dynamics approach," Utilities Policy, Elsevier, vol. 82(C).
  58. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
  59. Anna Stegman & Adrian De Andres & Henry Jeffrey & Lars Johanning & Stuart Bradley, 2017. "Exploring Marine Energy Potential in the UK Using a Whole Systems Modelling Approach," Energies, MDPI, vol. 10(9), pages 1-20, August.
  60. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
  61. Aryanpur, Vahid & Shafiei, Ehsan, 2015. "Optimal deployment of renewable electricity technologies in Iran and implications for emissions reductions," Energy, Elsevier, vol. 91(C), pages 882-893.
  62. Poncelet, Kris & Delarue, Erik & D’haeseleer, William, 2020. "Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility," Applied Energy, Elsevier, vol. 258(C).
  63. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
  64. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2016. "The “cost of not doing” energy planning: The Spanish energy bubble," Energy, Elsevier, vol. 101(C), pages 434-446.
  65. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
  66. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
  67. Batas Bjelić, Ilija & Rajaković, Nikola, 2015. "Simulation-based optimization of sustainable national energy systems," Energy, Elsevier, vol. 91(C), pages 1087-1098.
  68. Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
  69. Henrik C. Bylling & Salvador Pineda & Trine K. Boomsma, 2020. "The impact of short-term variability and uncertainty on long-term power planning," Annals of Operations Research, Springer, vol. 284(1), pages 199-223, January.
  70. Kazagic, Anes & Merzic, Ajla & Redzic, Elma & Music, Mustafa, 2014. "Power utility generation portfolio optimization as function of specific RES and decarbonisation targets – EPBiH case study," Applied Energy, Elsevier, vol. 135(C), pages 694-703.
  71. Blumberga, Dagnija & Blumberga, Andra & Barisa, Aiga & Rosa, Marika & Lauka, Dace, 2016. "Modelling the Latvian power market to evaluate its environmental long-term performance," Applied Energy, Elsevier, vol. 162(C), pages 1593-1600.
  72. Lara, Cristiana L. & Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Grossmann, Ignacio E., 2018. "Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1037-1054.
  73. Seljom, Pernille & Rosenberg, Eva & Schäffer, Linn Emelie & Fodstad, Marte, 2020. "Bidirectional linkage between a long-term energy system and a short-term power market model," Energy, Elsevier, vol. 198(C).
  74. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
  75. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
  76. Fortes, Patrícia & Simoes, Sofia G. & Amorim, Filipa & Siggini, Gildas & Sessa, Valentina & Saint-Drenan, Yves-Marie & Carvalho, Sílvia & Mujtaba, Babar & Diogo, Paulo & Assoumou, Edi, 2022. "How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal," Energy, Elsevier, vol. 239(PB).
  77. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
  78. Mohamed Hadri & Vincenzo Trovato & Agnes Bialecki & Bruno Merk & Aiden Peakman, 2021. "Assessment of High-Electrification UK Scenarios with Varying Levels of Nuclear Power and Associated Post-Fault Behaviour," Energies, MDPI, vol. 14(6), pages 1-23, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.