IDEAS home Printed from https://ideas.repec.org/r/bla/worlde/v34y2011ip1148-1167.html
   My bibliography  Save this item

The Abatement of Carbon Dioxide Intensity in China: Factors Decomposition and Policy Implications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fengjian Ge & Jiangfeng Li & Yi Zhang & Shipeng Ye & Peng Han, 2022. "Impacts of Energy Structure on Carbon Emissions in China, 1997–2019," IJERPH, MDPI, vol. 19(10), pages 1-25, May.
  2. Shiyi Chen & Wolfgang Härdle, 2014. "Dynamic activity analysis model-based win-win development forecasting under environment regulations in China," Computational Statistics, Springer, vol. 29(6), pages 1543-1570, December.
  3. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
  4. Elliott, Robert J.R. & Sun, Puyang & Chen, Siyang, 2013. "Energy intensity and foreign direct investment: A Chinese city-level study," Energy Economics, Elsevier, vol. 40(C), pages 484-494.
  5. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
  6. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
  7. Ming Yi & Mengqi Gong & Ting Wu & Yue Wang, 2018. "Nonlinear Effects of Urbanization and Outward Foreign Direct Investment on Carbon Emissions in China," Sustainability, MDPI, vol. 10(12), pages 1-11, November.
  8. Branger, Frédéric & Quirion, Philippe, 2015. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Energy Economics, Elsevier, vol. 47(C), pages 189-205.
  9. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
  10. Lin, Boqiang & Long, Houyin, 2016. "Input substitution effect in China׳s chemical industry: Evidences and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1617-1625.
  11. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
  12. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
  13. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
  14. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
  15. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
  16. Fan, Meiting & Shao, Shuai & Yang, Lili, 2015. "Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China)," Energy Policy, Elsevier, vol. 79(C), pages 189-201.
  17. Hongwei Xiao & Zhongyu Ma & Peng Zhang & Ming Liu, 2019. "Study of the impact of energy consumption structure on carbon emission intensity in China from the perspective of spatial effects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1365-1380, December.
  18. You, Jing & Huang, Yongfu, 2013. "Green-to-Grey China: Determinants and Forecasts of its Green Growth," MPRA Paper 57468, University Library of Munich, Germany, revised 16 Jul 2014.
  19. Xu Chu & Yiying Jin & Xuan Wang & Xiankun Wang & Xiaoqian Song, 2022. "The Evolution of the Spatial-Temporal Differences of Municipal Solid Waste Carbon Emission Efficiency in China," Energies, MDPI, vol. 15(11), pages 1-23, May.
  20. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
  21. Xin Yang & Anlu Zhang & Fan Zhang, 2019. "Farmers’ Heterogeneous Willingness to Pay for Farmland Non-Market Goods and Services on the Basis of a Mixed Logit Model—A Case Study of Wuhan, China," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
  22. Zhang, Cheng & Zhou, Xinxin & Zhou, Bo & Zhao, Ziwei, 2022. "Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics," China Economic Review, Elsevier, vol. 73(C).
  23. Bolin Yu & Debin Fang & Andrew N. Kleit & Kun Xiao, 2022. "Exploring the driving mechanism and the evolution of the low‐carbon economy transition: Lessons from OECD developed countries," The World Economy, Wiley Blackwell, vol. 45(9), pages 2766-2795, September.
  24. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
  25. Wang, Shaojian & Wang, Jieyu & Zhou, Yuquan, 2018. "Estimating the effects of socioeconomic structure on CO2 emissions in China using an econometric analysis framework," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 18-27.
  26. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
  27. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
  28. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
  29. Ying Xie & Minglong Zhang, 2023. "Influence of Clean Energy and Financial Structure on China’s Provincial Carbon Emission Efficiency—Empirical Analysis Based on Spatial Spillover Effects," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
  30. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
  31. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
  32. Dong, Zhaoyingzi & Wang, Shaojian & Zhang, Weiwen & Shen, Huijun, 2022. "The dynamic effect of environmental regulation on firms’ energy consumption behavior-Evidence from China's industrial firms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  33. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
  34. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.