IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A geometric approach to mechanism design

  • Jacob K. Goeree
  • Alexey Kushnir

We develop a novel geometric approach to mechanism design using an important result in convex analysis: the duality between a closed convex set and its support function. By deriving the support function for the set of feasible interim values we extend the wellknown Maskin-Riley-Matthews-Border conditions for reduced-form auctions to social choice environments. We next refine the support function to include incentive constraints using a geometric characterization of incentive compatibility. Borrowing results from majorization theory that date back to the work of Hardy, Littlewood, and Polya (1929) we elucidate the "ironing" procedure introduced by Myerson (1981) and Mussa and Rosen (1978). The inclusion of Bayesian and dominant strategy incentive constraints result in the same support function, which establishes equivalence between these implementation concepts. Using Hotelling's lemma we next derive the optimal mechanism for any social choice problem and any linear objective, including revenue and surplus maximization. We extend the approach to include general concave objectives by providing a fixed-point condition characterizing the optimal mechanism. We generalize reduced-form implementation to environments with multi-dimensional, correlated types, non-linear utilities, and interdependent values. When value interdependencies are linear we are able to include incentive constraints into the support function and provide a condition when the second-best allocation is ex post incentive compatible.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Department of Economics - University of Zurich in its series ECON - Working Papers with number 056.

in new window

Date of creation: Dec 2011
Date of revision: Jun 2013
Handle: RePEc:zur:econwp:056
Contact details of provider: Postal: Rämistrasse 71, CH-8006 Zürich
Phone: +41-1-634 21 37
Fax: +41-1-634 49 82
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Alex Gershkov & Benny Moldovanu & Xianwen Shi, 2011. "Bayesian and Dominant Strategy Implementation Revisited," Working Papers tecipa-422, University of Toronto, Department of Economics.
  2. Martin F. Hellwig, 2003. "Public-Good Provision with Many Participants," Review of Economic Studies, Wiley Blackwell, vol. 70(3), pages 589-614, 07.
  3. Hernando-Veciana, Ángel & Michelucci, Fabio, 2011. "Second best efficiency and the English auction," Games and Economic Behavior, Elsevier, vol. 73(2), pages 496-506.
  4. Jacob K. Goeree & Alexey Kushnir, 2011. "On the equivalence of Bayesian and dominant strategy implementation in a general class of social choice problems," ECON - Working Papers 021, Department of Economics - University of Zurich.
  5. Simo Puntanen, 2011. "Inequalities: Theory of Majorization and Its Applications, Second Edition by Albert W. Marshall, Ingram Olkin, Barry C. Arnold," International Statistical Review, International Statistical Institute, vol. 79(2), pages 293-293, 08.
  6. Alejandro M. Manelli & Daniel R. Vincent, 2010. "Bayesian and Dominant‐Strategy Implementation in the Independent Private‐Values Model," Econometrica, Econometric Society, vol. 78(6), pages 1905-1938, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:zur:econwp:056. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marita Kieser)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.