IDEAS home Printed from https://ideas.repec.org/p/zbw/safewp/266.html
   My bibliography  Save this paper

Econometrics at scale: Spark up big data in economics

Author

Listed:
  • Bluhm, Benjamin
  • Cutura, Jannic

Abstract

This paper provides an overview of how to use \big data" for economic research. We investigate the performance and ease of use of different Spark applications running on a distributed file system to enable the handling and analysis of data sets which were previously not usable due to their size. More specifically, we explain how to use Spark to (i) explore big data sets which exceed retail grade computers memory size and (ii) run typical econometric tasks including microeconometric, panel data and time series regression models which are prohibitively expensive to evaluate on stand-alone machines. By bridging the gap between the abstract concept of Spark and ready-to-use examples which can easily be altered to suite the researchers need, we provide economists and social scientists more generally with the theory and practice to handle the ever growing datasets available. The ease of reproducing the examples in this paper makes this guide a useful reference for researchers with a limited background in data handling and distributed computing.

Suggested Citation

  • Bluhm, Benjamin & Cutura, Jannic, 2020. "Econometrics at scale: Spark up big data in economics," SAFE Working Paper Series 266, Leibniz Institute for Financial Research SAFE.
  • Handle: RePEc:zbw:safewp:266
    DOI: 10.2139/ssrn.3226976
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/214153/1/1690458135.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.3226976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duchin, Ran & Sosyura, Denis, 2014. "Safer ratios, riskier portfolios: Banks׳ response to government aid," Journal of Financial Economics, Elsevier, vol. 113(1), pages 1-28.
    2. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    3. Boneva, Lena & Böninghausen, Benjamin & Letizia, Elisa & Rousová, Linda, 2019. "Derivatives transactions data and their use in central bank analysis," Economic Bulletin Articles, European Central Bank, vol. 6.
    4. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    5. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    6. Fernández-Villaverde, Jesús & Zarruk Valencia , David, 2018. "A Practical Guide to Parallelization in Economics," CEPR Discussion Papers 12890, C.E.P.R. Discussion Papers.
    7. Daniel S. Hamermesh, 2013. "Six Decades of Top Economics Publishing: Who and How?," Journal of Economic Literature, American Economic Association, vol. 51(1), pages 162-172, March.
    8. Jankowitsch, Rainer & Nagler, Florian & Subrahmanyam, Marti G., 2014. "The determinants of recovery rates in the US corporate bond market," Journal of Financial Economics, Elsevier, vol. 114(1), pages 155-177.
    9. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    10. Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
    11. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    12. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    13. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hellen Paz & Mateus Maia & Fernando Moraes & Ricardo Lustosa & Lilia Costa & Samuel Macêdo & Marcos E. Barreto & Anderson Ara, 2020. "Local Processing of Massive Databases with R: A National Analysis of a Brazilian Social Programme," Stats, MDPI, vol. 3(4), pages 1-21, October.
    2. Paz, Hellen & Maia, Mateus & Moraes, Fernando & Lustosa, Ricardo & Costa, Lilia & Macêdo, Samuel & Barreto, Marcos E. & Ara, Anderson, 2020. "Local processing of massive databases with R: a national analysis of a Brazilian social programme," LSE Research Online Documents on Economics 115770, London School of Economics and Political Science, LSE Library.
    3. Aur'elien Ouattara & Matthieu Bult'e & Wan-Ju Lin & Philipp Scholl & Benedikt Veit & Christos Ziakas & Florian Felice & Julien Virlogeux & George Dikos, 2021. "Scalable Econometrics on Big Data -- The Logistic Regression on Spark," Papers 2106.10341, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolov, Plamen & Adelman, Alan, 2019. "Do private household transfers to the elderly respond to public pension benefits? Evidence from rural China," The Journal of the Economics of Ageing, Elsevier, vol. 14(C).
    2. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    3. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    4. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    5. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    6. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    7. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    8. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    9. Jannis Bischof & Ulf Brüggemann & Holger Daske, 2023. "Asset Reclassifications and Bank Recapitalization During the Financial Crisis," Management Science, INFORMS, vol. 69(1), pages 75-100, January.
    10. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    11. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    12. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    13. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    14. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    15. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    16. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    17. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    18. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    19. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    20. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.

    More about this item

    Keywords

    Econometrics; Distributed Computing; Apache Spark;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:safewp:266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/csafede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.