IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2020021.html
   My bibliography  Save this paper

Improved Estimation of Dynamic Models of Conditional Means and Variances

Author

Listed:
  • Wang, Weining
  • Wooldridge, Jeffrey M.
  • Xu, Mengshan

Abstract

Modelling dynamic conditional heteroscedasticity is the daily routine in time series econometrics. We propose a weighted conditional moment estimation to potentially improve the eciency of the QMLE (quasi maximum likelihood estimation). The weights of conditional moments are selected based on the analytical form of optimal instruments, and we nominally decide the optimal instrument based on the third and fourth moments of the underlying error term. This approach is motivated by the idea of general estimation equations (GEE). We also provide an analysis of the eciency of QMLE for the location and variance parameters. Simulations and applications are conducted to show the better performance of our estimators.

Suggested Citation

  • Wang, Weining & Wooldridge, Jeffrey M. & Xu, Mengshan, 2020. "Improved Estimation of Dynamic Models of Conditional Means and Variances," IRTG 1792 Discussion Papers 2020-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2020021
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/230827/1/irtg1792dp2020-021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    2. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    3. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Hafner, Christian M. & Rombouts, Jeroen V.K., 2007. "Semiparametric Multivariate Volatility Models," Econometric Theory, Cambridge University Press, vol. 23(2), pages 251-280, April.
    5. Georg Keilbar & Yanfen Zhang, 2021. "On cointegration and cryptocurrency dynamics," Digital Finance, Springer, vol. 3(1), pages 1-23, March.
    6. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    7. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
    8. Jacob, Daniel, 2020. "Cross-Fitting and Averaging for Machine Learning Estimation of Heterogeneous Treatment Effects," IRTG 1792 Discussion Papers 2020-014, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. repec:hum:wpaper:sfb649dp2016-057 is not listed on IDEAS
    10. Shiyi Chen & Wolfgang K. Härdle & Li Wang, 2020. "Estimation and determinants of Chinese banks’ total factor efficiency: a new vision based on unbalanced development of Chinese banks and their overall risk," Computational Statistics, Springer, vol. 35(2), pages 427-468, June.
    11. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    12. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    13. Meng, Lina & Zhou, Yinggang & Zhang, Ruige & Ye, Zhen & Xia, Senmao & Cerulli, Giovanni & Casady, Carter & Härdle, Wolfgang Karl, 2020. "The Effect of Control Measures on COVID-19 Transmission and Work Resumption: International Evidence," IRTG 1792 Discussion Papers 2020-011, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weining & Yu, Lining & Wang, Bingling, 2020. "Tail Event Driven Factor Augmented Dynamic Model," IRTG 1792 Discussion Papers 2020-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Weining & Yu, Lining & Wang, Bingling, 2020. "Tail Event Driven Factor Augmented Dynamic Model," IRTG 1792 Discussion Papers 2020-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Weining Wang & Jeffrey M. Wooldridge & Mengshan Xu & Cuicui Lu & Chaowen Zheng, 2025. "Using generalized estimating equations to estimate nonlinear models with spatial data," Econometric Reviews, Taylor & Francis Journals, vol. 44(2), pages 214-242, February.
    3. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    4. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    5. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    6. Pandey, Ajay, 2003. "Modeling and Forecasting Volatility in Indian Capital Markets," IIMA Working Papers WP2003-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Wagner, Niklas, 2004. "Time-varying moments, idiosyncratic risk, and an application to hot-issue IPO aftermarket returns," Research in International Business and Finance, Elsevier, vol. 18(1), pages 59-72, April.
    8. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    9. Sun, Yiguo & Stengos, Thanasis, 2006. "Semiparametric efficient adaptive estimation of asymmetric GARCH models," Journal of Econometrics, Elsevier, vol. 133(1), pages 373-386, July.
    10. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    11. Christian Gouriéroux & Alain Monfort & Eric Renault, 2017. "Consistent Pseudo-Maximum Likelihood Estimators," Annals of Economics and Statistics, GENES, issue 125-126, pages 187-218.
    12. Ahmad, Tanveer & Shahzad, Syed Jawad Hussain & Rehman, Mobeen ur, 2014. "Industry Premiums and Systematic Risk under Terror: Empirical Evidence from Pakistan," MPRA Paper 60082, University Library of Munich, Germany.
    13. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    14. Bernd Hayo & Ali M. Kutan, 2005. "The impact of news, oil prices, and global market developments on Russian financial markets," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 13(2), pages 373-393, April.
    15. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    16. repec:rim:rimwps:38-07 is not listed on IDEAS
    17. Leo Michelis & Cathy Ning, 2010. "The dependence structure between the Canadian stock market and the USD/CAD exchange rate: a copula approach," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 43(3), pages 1016-1039, August.
    18. D Büttner & B. Hayo, 2012. "EMU-related news and financial markets in the Czech Republic, Hungary and Poland," Applied Economics, Taylor & Francis Journals, vol. 44(31), pages 4037-4053, November.
    19. Gabriele Fiorentini & Enrique Sentana, 2007. "On the Efficiency and Consistency of Likelihood Estimation in Multivariate Conditionally Heteroskedastic Dynamic Regression Models," Working Papers wp2007_0713, CEMFI.
    20. Andreas Brunhart, 2014. "Stock Market's Reactions to Revelation of Tax Evasion: An Empirical Assessment," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 161-190, September.
    21. Marc Saez Zafra & Jorge V. Pérez Rodríguez, 1994. "Modelos autorregresivos para la varianza condicionada heteroscedastica (ARCH)," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 2, pages 71-106, Diciembre.

    More about this item

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2020021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.