IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/200909.html
   My bibliography  Save this paper

Network hierarchy in Kirman's ant model: fund investment can create systemic risk

Author

Listed:
  • Alfarano, Simone
  • Milaković, Mishael
  • Raddant, Matthias

Abstract

Kirman's ant model has been used to characterize the expectation formation of financial investors who are prone to herding. The model's original version suffers from the problem of N-dependence: its ability to replicate the statistical features of financial returns vanishes once the system size N is increased. In a generalized version of the ant model, the network structure connecting agents turns out to determine whether or not the model is N-dependent. We investigate a class of hierarchical networks in the generalized model that presumably reflect the institutional heterogeneity of financial markets. These network structures do overcome the problem of N-dependence, but at the same time they also increase system-wide volatility. Thus network structure becomes an auxiliary source of volatility in addition to the behavioral heterogeneity of interacting agents.

Suggested Citation

  • Alfarano, Simone & Milaković, Mishael & Raddant, Matthias, 2009. "Network hierarchy in Kirman's ant model: fund investment can create systemic risk," Economics Working Papers 2009-09, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:200909
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/29538/1/614779200.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Aoki, Masanao, 2008. "Thermodynamic limits of macroeconomic or financial models: One- and two-parameter Poisson-Dirichlet models," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 66-84, January.
    2. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, pages 101-136.
    3. Russ Wermers, 1999. "Mutual Fund Herding and the Impact on Stock Prices," Journal of Finance, American Finance Association, vol. 54(2), pages 581-622, April.
    4. Lux, Thomas & Schornstein, Sascha, 2005. "Genetic learning as an explanation of stylized facts of foreign exchange markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 169-196, February.
    5. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word-of-Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    6. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    7. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, Oxford University Press, vol. 108(1), pages 137-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albrecht Irle & Jonas Kauschke & Thomas Lux & Mishael Milaković, 2011. "Switching Rates And The Asymptotic Behavior Of Herding Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 359-376.
    2. Chang, Chia-ling & Chen, Shu-heng, 2011. "Interactions in DSGE models: The Boltzmann-Gibbs machine and social networks approach," Economics Discussion Papers 2011-25, Kiel Institute for the World Economy (IfW).
    3. Chen, Shu-heng & Chang, Chia-ling, 2012. "Interactions in the New Keynesian DSGE models: The Boltzmann-Gibbs machine and social networks approach," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 6, pages 1-32.

    More about this item

    Keywords

    herding; financial markets; networks; N-dependence; systemic risk;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:200909. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/vakiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.