IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/00-17.html
   My bibliography  Save this paper

The Use of Parametric and Non Parametric Frontier Methods to Measure the Productive Efficiency in the Industrial Sector. A Comparative Study

Author

Listed:
  • Luis R. Murillo-Zamorano
  • Juan Vega-Cervera

Abstract

Parametric frontier models and non-parametric methods have monopolised the recent literature on productive efficiency measurement. Empirical applications have usually dealt with either one or the other group of techniques. This paper applies a range of both types of approaches to an industrial organisation setup. The joint use can improve the accuracy of both, although some methodological difficulties can arise. The robustness of different methods in ranking productive units allows us to make an comparative analysis of them. Empirical results concern productive and market demand structure, returns-to-scale, and productive inefficiency sources. The techniques are illustrated using data from the US electric power industry.

Suggested Citation

  • Luis R. Murillo-Zamorano & Juan Vega-Cervera, "undated". "The Use of Parametric and Non Parametric Frontier Methods to Measure the Productive Efficiency in the Industrial Sector. A Comparative Study," Discussion Papers 00/17, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:00/17
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2000/0017.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fare,Rolf & Grosskopf,Shawna & Lovell,C. A. Knox, 2008. "Production Frontiers," Cambridge Books, Cambridge University Press, number 9780521072069.
    2. Schmidt, Peter & Lovell, C. A. Knox, 1980. "Estimating stochastic production and cost frontiers when technical and allocative inefficiency are correlated," Journal of Econometrics, Elsevier, vol. 13(1), pages 83-100, May.
    3. Kumbhakar, Subal C. & Heshmati, Almas & Hjalmarsson, Lennart, 1997. "Temporal patterns of technical efficiency: Results from competing models," International Journal of Industrial Organization, Elsevier, vol. 15(5), pages 597-616, August.
    4. Ferrier, Gary D. & Lovell, C. A. Knox, 1990. "Measuring cost efficiency in banking : Econometric and linear programming evidence," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 229-245.
    5. J. Cummins & Hongmin Zi, 1998. "Comparison of Frontier Efficiency Methods: An Application to the U.S. Life Insurance Industry," Journal of Productivity Analysis, Springer, vol. 10(2), pages 131-152, October.
    6. Lee, Byung-Joo, 1995. "Separability Test for the Electricity Supply Industry," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(1), pages 49-60, Jan.-Marc.
    7. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    8. Kumbhakar, Subal C, 1991. "The Measurement and Decomposition of Cost-Inefficiency: The Translog Cost System," Oxford Economic Papers, Oxford University Press, vol. 43(4), pages 667-683, October.
    9. Greene, William H., 1980. "On the estimation of a flexible frontier production model," Journal of Econometrics, Elsevier, vol. 13(1), pages 101-115, May.
    10. Schmidt, Peter & Knox Lovell, C. A., 1979. "Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers," Journal of Econometrics, Elsevier, vol. 9(3), pages 343-366, February.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    13. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    14. Jati Sengupta, 1995. "Estimating efficiency by cost frontiers: a comparison of parametric and nonparametric methods," Applied Economics Letters, Taylor & Francis Journals, vol. 2(4), pages 86-90.
    15. Fare, R. & Grosskopf, S. & Logan, J., 1985. "The relative performance of publicly-owned and privately-owned electric utilities," Journal of Public Economics, Elsevier, vol. 26(1), pages 89-106, February.
    16. Sengupta, Jati K., 1999. "A dynamic efficiency model using data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 62(3), pages 209-218, September.
    17. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    18. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(03), December.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Rajiv D. Banker & Richard C. Morey, 1986. "The Use of Categorical Variables in Data Envelopment Analysis," Management Science, INFORMS, vol. 32(12), pages 1613-1627, December.
    21. Richmond, J, 1974. "Estimating the Efficiency of Production," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(2), pages 515-521, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Productive efficiency; parametric frontiers; DEA; industrial sector;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:00/17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Paul Hodgson). General contact details of provider: http://edirc.repec.org/data/deyoruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.