IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Testing for Neglected Nonlinearity Using Twofold Unidentified Models under the Null and Hexic Expansions (published in: Essays in Nonlinear Time Series Econometrics, Festschrift in Honor of Timo Terasvirta. Eds. Niels Haldrup, Mika Meitz, and Pentti Saikkonen (2014). Oxford: Oxford University Press.)

Listed author(s):

    (School of Economics, Yonsei University)


    (CSFI, Osaka University)


    (Department of Economics, University of California, San Diego)

We revisit the twofold identification problem discussed by Cho, Ishida, and White (Neural Computation, 2011), which arises when testing for neglected nonlinearity by artificial neural networks. We do not use the so-called ¡°no-zero¡± condition and employ a sixth-order expansion to obtain the asymptotic null distribution of the quasi-likelihood ratio (QLR) test. In particular, we avoid restricting the number of explanatory variables in the activation function by using the distance and direction method discussed in Cho and White (Neural Computation, 2012). We find that the QLR test statistic can still be used to handle the twofold identification problem appropriately under the set of mild regularity conditions provided here, so that the asymptotic null distribution can be obtained in a manner similar to that in Cho, Ishida, and White (Neural Computation, 2011). This also implies that the weighted bootstrap in Hansen (Econometrica, 1996) can be successfully exploited when testing the linearity hypothesis using the QLR test.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Yonsei University, Yonsei Economics Research Institute in its series Working papers with number 2013rwp-55.

in new window

Length: 31 pages
Date of creation: Feb 2013
Handle: RePEc:yon:wpaper:2013rwp-55
Contact details of provider: Postal:
50 Yonsei-ro, Seodaemun-gu, Seoul

Phone: 82-2-2123-4065
Fax: 82-2-364-9149
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:yon:wpaper:2013rwp-55. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (YERI)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.