IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpga/0310006.html
   My bibliography  Save this paper

Nonanonymity and sensitivity of computable simple games

Author

Listed:
  • H. Reiju Mihara

    (Kagawa University)

Abstract

This paper investigates algorithmic computability of simple games (voting games). It shows that (i) games with a finite carrier are computable, (ii) computable games have both finite winning coalitions and cofinite losing coalitions, and (iii) computable games violate any conceivable notion of anonymity, including finite anonymity and measurebased anonymity. The paper argues that computable games are excluded from the intuitive class of "nice" infinite games, employing the notion of "insensitivity"-equal treatment of any two coalitions that differ only on a finite set.

Suggested Citation

  • H. Reiju Mihara, 2003. "Nonanonymity and sensitivity of computable simple games," Game Theory and Information 0310006, University Library of Munich, Germany, revised 01 Jun 2004.
  • Handle: RePEc:wpa:wuwpga:0310006
    Note: Type of Document - pdf; prepared on Mac OS X; pages: 15; To appear in Mathematical Social Sciences figures: None
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/game/papers/0310/0310006.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. H. Reiju Mihara, 1997. "Anonymity and neutrality in Arrow's Theorem with restricted coalition algebras," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(4), pages 503-512.
    2. H. Reiju Mihara, 1997. "Arrow's Theorem and Turing computability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(2), pages 257-276.
    3. Kirman, Alan P. & Sondermann, Dieter, 1972. "Arrow's theorem, many agents, and invisible dictators," Journal of Economic Theory, Elsevier, vol. 5(2), pages 267-277, October.
    4. H. Reiju Mihara, 1997. "Arrow's Theorem, countably many agents, and more visible invisible dictators," Public Economics 9705001, University Library of Munich, Germany, revised 01 Jun 2004.
    5. Andrei Gomberg & César Martinelli & Ricard Torres, 2005. "Anonymity in large societies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 25(1), pages 187-205, October.
    6. Banks, Jeffrey S. & Duggan, John & Le Breton, Michel, 2006. "Social choice and electoral competition in the general spatial model," Journal of Economic Theory, Elsevier, vol. 126(1), pages 194-234, January.
    7. Mihara, H. Reiju, 1999. "Arrow's theorem, countably many agents, and more visible invisible dictators1," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 267-287, November.
    8. Armstrong, Thomas E., 1980. "Arrow's theorem with restricted coalition algebras," Journal of Mathematical Economics, Elsevier, vol. 7(1), pages 55-75, March.
    9. Weber, Robert J., 1994. "Games in coalitional form," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 36, pages 1285-1303 Elsevier.
    10. Armstrong, Thomas E., 1985. "Precisely dictatorial social welfare functions : Erratum and Addendum to `arrows theorem with restricted coalition algebras'," Journal of Mathematical Economics, Elsevier, vol. 14(1), pages 57-59, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kari Saukkonen, 2007. "Continuity of social choice functions with restricted coalition algebras," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 637-647, June.
    2. Kumabe, Masahiro & Mihara, H. Reiju, 2008. "Computability of simple games: A characterization and application to the core," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 348-366, February.
    3. Kumabe, Masahiro & Mihara, H. Reiju, 2011. "Computability of simple games: A complete investigation of the sixty-four possibilities," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 150-158, March.
    4. Masahiro Kumabe & H. Reiju Mihara, 2008. "The Nakamura numbers for computable simple games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(4), pages 621-640, December.

    More about this item

    Keywords

    Voting games; infinitely many players; ultrafilters; recursion theory; Turing computability; finite carriers; finite winning coalitions; algorithms;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0310006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.