IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Judgement aggregation functions and ultraproducts

  • Herzberg, Frederik S.

The relationship between propositional model theory and social decision making via premise-based procedures is explored. A one-to-one correspondence between ultrafilters on the population set and weakly universal, unanimity-respecting, systematic judgment aggregation functions is established. The proof constructs an ultraproduct of profiles, viewed as propositional structures, with respect to the ultrafilter of decisive coalitions. This representation theorem can be used to prove other properties of such judgment aggregation functions, in particular sovereignty and monotonicity, as well as an impossibility theorem for judgment aggregation in finite populations. As a corollary, Lauwers and Van~Liedekerke's (1995) representation theorem for preference aggregation functions is derived.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/10546/1/MPRA_paper_10546.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 10546.

as
in new window

Length:
Date of creation: 22 Jul 2008
Date of revision: 10 Sep 2008
Handle: RePEc:pra:mprapa:10546
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christian Klamler & Daniel Eckert, 2009. "A simple ultrafilter proof for an impossibility theorem in judgment aggregation," Economics Bulletin, AccessEcon, vol. 29(1), pages 319-327.
  2. Dietrich, Franz & List, Christian, 2010. "Majority voting on restricted domains," Journal of Economic Theory, Elsevier, vol. 145(2), pages 512-543, March.
  3. KIRMAN, Alan P. & SONDERMANN, Dieter, . "Arrow's theorem, many agents, and indivisible dictators," CORE Discussion Papers RP -118, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Fishburn, Peter C., 1970. "Arrow's impossibility theorem: Concise proof and infinite voters," Journal of Economic Theory, Elsevier, vol. 2(1), pages 103-106, March.
  5. Armstrong, Thomas E., 1980. "Arrow's theorem with restricted coalition algebras," Journal of Mathematical Economics, Elsevier, vol. 7(1), pages 55-75, March.
  6. Armstrong, Thomas E., 1985. "Precisely dictatorial social welfare functions : Erratum and Addendum to `arrows theorem with restricted coalition algebras'," Journal of Mathematical Economics, Elsevier, vol. 14(1), pages 57-59, February.
  7. G Rdenfors, Peter, 2006. "A Representation Theorem For Voting With Logical Consequences," Economics and Philosophy, Cambridge University Press, vol. 22(02), pages 181-190, July.
  8. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10546. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.