IDEAS home Printed from
   My bibliography  Save this paper

Judgement aggregation functions and ultraproducts


  • Herzberg, Frederik S.


The relationship between propositional model theory and social decision making via premise-based procedures is explored. A one-to-one correspondence between ultrafilters on the population set and weakly universal, unanimity-respecting, systematic judgment aggregation functions is established. The proof constructs an ultraproduct of profiles, viewed as propositional structures, with respect to the ultrafilter of decisive coalitions. This representation theorem can be used to prove other properties of such judgment aggregation functions, in particular sovereignty and monotonicity, as well as an impossibility theorem for judgment aggregation in finite populations. As a corollary, Lauwers and Van~Liedekerke's (1995) representation theorem for preference aggregation functions is derived.

Suggested Citation

  • Herzberg, Frederik S., 2008. "Judgement aggregation functions and ultraproducts," MPRA Paper 10546, University Library of Munich, Germany, revised 10 Sep 2008.
  • Handle: RePEc:pra:mprapa:10546

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Philippe Mongin, 2011. "Judgment aggregation," Working Papers hal-00579346, HAL.
    2. Fishburn, Peter C., 1970. "Arrow's impossibility theorem: Concise proof and infinite voters," Journal of Economic Theory, Elsevier, vol. 2(1), pages 103-106, March.
    3. Dietrich, Franz & List, Christian, 2010. "Majority voting on restricted domains," Journal of Economic Theory, Elsevier, vol. 145(2), pages 512-543, March.
    4. Kirman, Alan P. & Sondermann, Dieter, 1972. "Arrow's theorem, many agents, and invisible dictators," Journal of Economic Theory, Elsevier, vol. 5(2), pages 267-277, October.
    5. G Rdenfors, Peter, 2006. "A Representation Theorem For Voting With Logical Consequences," Economics and Philosophy, Cambridge University Press, vol. 22(02), pages 181-190, July.
    6. Christian Klamler & Daniel Eckert, 2009. "A simple ultrafilter proof for an impossibility theorem in judgment aggregation," Economics Bulletin, AccessEcon, vol. 29(1), pages 319-327.
    7. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
    8. Armstrong, Thomas E., 1980. "Arrow's theorem with restricted coalition algebras," Journal of Mathematical Economics, Elsevier, vol. 7(1), pages 55-75, March.
    9. Armstrong, Thomas E., 1985. "Precisely dictatorial social welfare functions : Erratum and Addendum to `arrows theorem with restricted coalition algebras'," Journal of Mathematical Economics, Elsevier, vol. 14(1), pages 57-59, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christian Klamler & Daniel Eckert, 2009. "A simple ultrafilter proof for an impossibility theorem in judgment aggregation," Economics Bulletin, AccessEcon, vol. 29(1), pages 319-327.

    More about this item


    Judgment aggregation function; ultraproduct; ultrafilter;

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.