IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Arrow's theorem, Weglorz' models and the axiom of choice

  • Norbert Brunner

    (U. Bodenkultur)

  • H. Reiju Mihara

    (Kagawa University)

Applying Weglorz' models of set theory without the axiom of choice, we investigate Arrow-type social welfare functions for infinite societies with restricted coalition algebras. We show that there is a reasonable, nondictatorial social welfare function satisfying "finite discrimination", if and only if in Weglorz' model there is a free ultrafilter on a set representing the individuals.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/pe/papers/9902/9902001.pdf
Download Restriction: no

Paper provided by EconWPA in its series Public Economics with number 9902001.

as
in new window

Length:
Date of creation: 02 Feb 1999
Date of revision: 01 Jun 2004
Handle: RePEc:wpa:wuwppe:9902001
Note: Mathematical Logic Quarterly (2000) 46: 335-359
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. KIRMAN, Alan P. & SONDERMANN, Dieter, . "Arrow's theorem, many agents, and indivisible dictators," CORE Discussion Papers RP -118, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. H. Reiju Mihara, 1994. "Anonymity and Neutrality in Arrow's Theorem with Restricted Coalition Algebras," Public Economics 9411001, EconWPA, revised 22 Nov 1994.
  3. repec:cup:cbooks:9780521424585 is not listed on IDEAS
  4. H. Reiju Mihara, 2001. "Existence of a coalitionally strategyproof social choice function: A constructive proof," Social Choice and Welfare, Springer, vol. 18(3), pages 543-553.
  5. H. Reiju Mihara, 1997. "Arrow's Theorem and Turing computability," Economic Theory, Springer, vol. 10(2), pages 257-276.
  6. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
  7. Fishburn, Peter C., 1970. "Arrow's impossibility theorem: Concise proof and infinite voters," Journal of Economic Theory, Elsevier, vol. 2(1), pages 103-106, March.
  8. H. Reiju Mihara, 1997. "Arrow's Theorem, countably many agents, and more visible invisible dictators," Public Economics 9705001, EconWPA, revised 07 May 1997.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwppe:9902001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.