IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa06p777.html
   My bibliography  Save this paper

Spatial Structures and Spatial Spillovers: A GME Approach

Author

Listed:
  • Matias Mayor Fernandez

    ()

  • Esteban Fernandez Vazquez

    ()

  • Jorge Rodriguez Valez

    ()

Abstract

Spatial econometrics is a subdiscipline that have gained a huge popularity in the last twenty years, not only in theoretical econometrics but in empirical studies as well. Basically, spatial econometric methods measure spatial interaction and incorporate spatial structure into regression analysis. The specification of a matrix of spatial weights W plays a crucial role in the estimation of spatial models. The elements of this matrix measure the spatial relationships between two geographical locations i and j, and they are specified exogenously to the model. Several alternatives for W have been proposed in the literature, although binary matrices based on contiguity among locations or distance matrices are the most commons choices. One shortcoming of using this type of matrices for the spatial models is the impossibility of estimating “heterogeneous†spatial spillovers: the typical objective is the estimation of a parameter that measures the average spatial effect of the set of locations analysed. Roughly speaking, this is given by “ill-posed†econometric models where the number of (spatial) parameters to estimate is too large. In this paper, we explore the use of generalized maximum entropy econometrics (GME) to estimate spatial structures. This technique is very attractive in situations where one has to deal with estimation of “ill-posed†or “ill-conditioned†models. We compare by means of Monte Carlo simulations “classical†ML estimators with GME estimators in several situations with different availability of information.

Suggested Citation

  • Matias Mayor Fernandez & Esteban Fernandez Vazquez & Jorge Rodriguez Valez, 2006. "Spatial Structures and Spatial Spillovers: A GME Approach," ERSA conference papers ersa06p777, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa06p777
    as

    Download full text from publisher

    File URL: http://www-sre.wu.ac.at/ersa/ersaconfs/ersa06/papers/777.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Enrique López-Bazo & Esther Vayá & Manuel Artís, 2004. "Regional Externalities And Growth: Evidence From European Regions," Journal of Regional Science, Wiley Blackwell, vol. 44(1), pages 43-73.
    3. F Stetzer, 1982. "Specifying weights in spatial forecasting models: the results of some experiments," Environment and Planning A, Pion Ltd, London, vol. 14(5), pages 571-584, May.
    4. Cornelis Gardebroek & Alfons G.J.M. Oude Lansink, 2004. "Farm-specific Adjustment Costs in Dutch Pig Farming," Journal of Agricultural Economics, Wiley Blackwell, vol. 55(1), pages 3-24.
    5. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    6. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, pages 99-121.
    7. Anselin, Luc, 2002. "Under the hood Issues in the specification and interpretation of spatial regression models," Agricultural Economics of Agricultural Economists, International Association of Agricultural Economists, vol. 27(3), November.
    8. F Stetzer, 1982. "Specifying Weights in Spatial Forecasting Models: The Results of Some Experiments," Environment and Planning A, , vol. 14(5), pages 571-584, May.
    9. Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
    10. Jeffrey P. Cohen & Catherine J. Morrison Paul, 2004. "Public Infrastructure Investment, Interstate Spatial Spillovers, and Manufacturing Costs," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 551-560, May.
    11. Dubin, Robin A., 1998. "Spatial Autocorrelation: A Primer," Journal of Housing Economics, Elsevier, vol. 7(4), pages 304-327, December.
    12. Case, Anne C. & Rosen, Harvey S. & Hines, James Jr., 1993. "Budget spillovers and fiscal policy interdependence : Evidence from the states," Journal of Public Economics, Elsevier, pages 285-307.
    13. Bullock, David S. & Lowenberg-DeBoer, Jess & Swinton, Scott M., 2002. "Adding value to spatially managed inputs by understanding site-specific yield response," Agricultural Economics of Agricultural Economists, International Association of Agricultural Economists, vol. 27(3), November.
    14. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    15. Iain Fraser, 2000. "An application of maximum entropy estimation: the demand for meat in the United Kingdom," Applied Economics, Taylor & Francis Journals, vol. 32(1), pages 45-59.
    16. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    17. Bernard Fingleton, 2001. "Equilibrium and Economic Growth: Spatial Econometric Models and Simulations," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 117-147.
    18. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa06p777. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: http://www.ersa.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.